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Representations Feature Space Expansion

Feature Space Expansion

High-dimensional feature spaces facilitate computations,
e.g. enable linear separability of class regions

@ polynomial expansion: (x1..xg) = (X1..Xd, -, XiXj.., XiXjXk)

o time history: use (x¢,X;_1...%X;_ k) € RI(k+1)
o filters — temporal convolution with kernels: x(t) = /K(t, t') - x(t') dt’

o Kernel trick
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Representations Feature Space Expansion

Kernel Trick

@ linear regressors or perceptrons often have the form

N
y(x)=w'-x= Z)\a-xa-x
a=1
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Representations Feature Space Expansion

Kernel Trick

@ linear regressors or perceptrons often have the form

N
y(x) =w'-x = ZAQ-XQ'XZZWa‘¢(xa)‘¢(X)
a=1 «

@ goal: introduce non-linear, high-dimensional features ¢(x)
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Representations Feature Space Expansion

Kernel Trick

@ linear regressors or perceptrons often have the form

y(x) =w'-x = Z)\a Xo X—Zwa d(Xq) - Zwa- (Xas X)

@ goal: introduce non-linear, high-dimensional features ¢(x)

@ kernel directly computes scalar product of feature vectors
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Representations Feature Space Expansion

Kernel Trick

@ linear regressors or perceptrons often have the form

y(x) =w'-x = Z)\a Xo X—Zwa A(Xa) - H(x) = Zwa K(xq,x)

@ goal: introduce non-linear, high-dimensional features ¢ (x)

@ kernel directly computes scalar product of feature vectors

@ typical examples, e.g. in support vector machines (SVM):
o polynomial kernel: K(x,x") = (x-x" 4+ 1)P

o Gaussian kernel: K(x,x') = exp(—%)
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Representations Feature Space Expansion

Example: Bayesian Linear Regression

Fx, w) = w' - ¢(x) y = f(x,w)+1
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Representations Feature Space Expansion

Example: Bayesian Linear Regression

Fix, w) =w' - ¢(x) y =f(x,w)+n
ply | x,w) = N(w'o(x), 3711) Gaussian data distribution
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Representations Feature Space Expansion

Example: Bayesian Linear Regression

F(x, w) = wt - 9(x) y = Flxw)+ 7
p(y | x,w) = N(wi¢(x), 3711) Gaussian data distribution
W = (010) 1oty ®f = [9(x1)..... o(xn)] € RV
(maximum likelihood estimator) yi=[y,...,yn] € RV
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Representations Feature Space Expansion

Example: Bayesian Linear Regression

Fx,w) =w' - ¢(x) y =f(x,w)+n
p(y | x,w) = N(wi¢(x), 3711) Gaussian data distribution
Wi = (1) Ty ®f = [9(x1)..... o(xn)] € RV
(maximum likelihood estimator) vy =[y,...,yn] €RN
p(w) = N(0,a"11) Gaussian a-priori distribution

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 5 /44



Representations Feature Space Expansion

Example: Bayesian Linear Regression

F(x,w) = wt - 6(x) y = Fxw) 41
p(y | x,w) = N(wi¢(x), 3711) Gaussian data distribution
W = (60) Tty Ot = [p(x), ..., d(xn)] € RPN
(maximum likelihood estimator) vy =[y,...,yn] €RN
p(w) = N(0,a"11) Gaussian a-priori distribution
p(w | y)=N(mp, Sn) a-posteriori distribution
Wyap = my = BSydly MAP estimator
Sy = (al + gote)~! e R9xd
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Representations Feature Space Expansion

Example: Bayesian Linear Regression

Fx,w) = wt - 6(x) y = Fxw) 41
p(y | x,w) = N(wi¢(x), 3711) Gaussian data distribution
W = (60) Tty Ot = [p(x), ..., d(xn)] € RPN
(maximum likelihood estimator) vy =[y,...,yn] €RN
p(w) = N(0,a"11) Gaussian a-priori distribution
p(w|y)=N(mp, Sn) a-posteriori distribution
Wyap = my = BSydly MAP estimator
Sy = (al + goto)~! e R9xd

J(x) = 6(x)" - Wimap = B+ ¢(x)' Sy -y =D B+ ¢(x)'SN(Xa)  Ya
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Representations Feature Space Expansion

Example: Bayesian Linear Regression

F(x,w) = wt - 6(x) y = Fxw) 41
p(y | x,w) = N(wi¢(x), 3711) Gaussian data distribution
W = (60) Tty Ot = [p(x), ..., d(xn)] € RPN
(maximum likelihood estimator) vy =[y,...,yn] €RN
p(w) = N(0,a"11) Gaussian a-priori distribution
p(w|y)=N(mp, Sn) a-posteriori distribution
Wyap = my = BSydly MAP estimator
Sy = (al + goto)~! e R9xd

P(x) = ¢(x)" - Wumap = B+ ¢(x)'Sy® -y =D B+ d(x)' Snd(%a)  Ya
= K(x.%a) * Ya K (%, %a) = B(xX)!Snd(xa)

«
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Representations Gaussian Processes

Outline

© Representations
Feature Space Expansion
@ Gaussian Processes
Reservoir Computing
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Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap
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Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap
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Representations Gaussian Processes

Gaussian Processes
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ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 6 /44



Representations Gaussian Processes

Gaussian Processes

@ predictive distribution of Bayesian Linear Regression:
ply %) = N(Wyap - ¢(x), ofy(x))
on(x) = B+ (x)" Sw - d(x)

@ variance: data noise + uncertainty of Wyap
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Representations Gaussian Processes

Gaussian Processes

o distribution over parameters w induces distribution over estimator functions

@ idea of Gaussian Processes: directly operate on function distributions,
skipping the parameter representation
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Representations Gaussian Processes

Gaussian Processes

o distribution over parameters w induces distribution over estimator functions

@ idea of Gaussian Processes: directly operate on function distributions,
skipping the parameter representation

Definition

@ A Gaussian process is a collection of random variables,
any finite collection of which has a joint Gaussian distribution.
@ A Gaussian process is fully specified by a mean function f(x)
and covariance function k(x,x’).
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Representations Gaussian Processes

Gaussian Processes

o distribution over parameters w induces distribution over estimator functions

@ idea of Gaussian Processes: directly operate on function distributions,
skipping the parameter representation

@ A Gaussian process is a collection of random variables,
any finite collection of which has a joint Gaussian distribution.

@ A Gaussian process is fully specified by a mean function f(x)
and covariance function k(x,x’).

@ linear model f(x) = wt¢p(x) with Gaussian prior p(w) = N(0,a~11)
@ any tuple [f(x1)...f(xn)] has Gaussian distribution
(as linear combination of Gaussian distributed variables w)
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Representations Gaussian Processes

Gaussian Processes

@ A Gaussian process is a collection of random variables,
any finite collection of which has a joint Gaussian distribution.

o A Gaussian process is fully specified by a mean function f(x)
and covariance function k(x,x’).

@ linear model f(x) = wt¢p(x) with Gaussian prior p(w) = N(0,a"11)
@ any tuple [f(x1)...f(xn)] has Gaussian distribution
(as linear combination of Gaussian distributed variables w)

Specification: mean + covariance function
e mean: E[f(x)] = E[w!]-¢(x) =0
e covariance: E[f(x)f(X')] = ¢(x)! E[ww!] ¢(x') = a to(x)! - (x') = k(x,x')
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Representations Gaussian Processes

Gaussian Process Regression

@ How we can exploit GPs for regression?

@ N training points xj ...xpy induce a Gaussian distribution
of associated function values fyy = [f(x1) ... f(xn)].
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Representations Gaussian Processes

Gaussian Process Regression

@ How we can exploit GPs for regression?
@ N training points xj ...xpy induce a Gaussian distribution
of associated function values fyy = [f(x1) ... f(xn)].

@ Embedding an additional N+1-th “query point” xy41 again yields
a Gaussian distribution, now of fy1 = [f(x1)...f(xn), f(xn+1)]-
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Representations Gaussian Processes

Gaussian Process Regression

@ How we can exploit GPs for regression?

@ N training points xj ...xpy induce a Gaussian distribution
of associated function values fyy = [f(x1) ... f(xn)].

@ Embedding an additional N+1-th “query point” xy41 again yields
a Gaussian distribution, now of fy1 = [f(x1)...f(xn), f(xn+1)]-

e Evaluate predictive distribution p(f(xy41) | f(x1) ... f(xn)).
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Representations Gaussian Processes

Gaussian Process Regression

Computational Steps

p(fvi1) = N(0,Kny1)
Ky = (’:’tv t) e RIN+D)x(N+1)
Kn(XnsXm) = k(Xn,Xm)
k = [k(xl,XN+1)...k(XN,XN+1)] € RN
c = k(xn+1,%Xn+1)
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Representations Gaussian Processes

Gaussian Process Regression

Computational Steps

p(fvi1) = N(0,Kni1)
Knt1 = (’;’t" k>€R(’V+1)X(N+1)
c
KN(xn;xm) = k(xn;xm)

k [k(xl,xN+1)...k(xN,xN+1)] S RN
c = k(xnt1,Xn41)

predictive distribution

o p(fy+1 | fv) is again Gaussian
o with mean p(xy11) = ki - Kyt - fy

o and variance 0?(xy11) = ¢ — kt - Kyt -k
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Representations Reservoir Computing

Outline

© Representations
Feature Space Expansion
Gaussian Processes
@ Reservoir Computing
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Representations Reservoir Computing

Multilayer Perceptron

® ®

@ hidden layer serves as ®

high-dimensional feature space ® ‘ . ‘ :
@ back propagation creates ® *

“optimal” features ® ®
@ but: input weights adapt only o ®

lowl : .

slowly input hidden layer output
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Representations Reservoir Computing

Extreme Learning Machine

® ®
o
@ simplification: ® ‘ . ‘ :
fixed, random input features P °
. . ® o
@ linear readout facilitates
learning: regression methods @ o
input hidden layer output
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Representations Reservoir Computing

Reservoir Computing

recurrent reservoir
allows for temporal dynamics

o
o
@ even more rich feature space
°

_ _ ®
linear readout: regression
® [ ]
]
® ®
o
input fixed reservoir output
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Representations Reservoir Computing

Reservoir Computing

recurrent reservoir
allows for temporal dynamics

even more rich feature space

linear readout: regression

echo state network

@ liquid state machine

@ backpropagation-decorrelation

input fixed reservoir output
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Representations Reservoir Computing

Reservoir Computing

recurrent reservoir
allows for temporal dynamics
even more rich feature space

linear readout: regression

echo state network

@ liquid state machine

@ backpropagation-decorrelation

_ input fixed reservoir output
@ How to tune the reservoir?

echo state property: activity
decays without excitation
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Representations Reservoir Computing

Associative Reservoir Network [Steil]

@ learning in both directions

@ input forcing

@ bidirectional association

o forward mapping
@ inverse mapping

input fixed reservoir output
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Function Learning

Outline

© Function Learning
@ Parameterized SOM
@ Unsupervised Kernel Regression
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Function Learning Parameterized SOM

Outline

© Function Learning
@ Parameterized SOM
Unsupervised Kernel Regression
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Function Learning Parameterized SOM

Parameterized SOM [Ritter 1993]

@ fast learning of functions and inverses
@ generalization of self-organizing maps (SOM)
from discrete to continuous manifolds

C3; €33 .
A M
w(c)
— -
discrete
mapping X1
C We
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Function Learning Parameterized SOM

Parameterized SOM [Ritter 1993]

@ fast learning of functions and inverses
@ generalization of self-organizing maps (SOM)
from discrete to continuous manifolds

w(s)
»
continuous
mapping
S We
coordinate system S manifold M
spanned by nodes c e A in input space X

Robert Haschke (CITEC) Learning — From Physics to Knowledge

Sep 2013

14 / 44



Function Learning Parameterized SOM

PSOM: Function Modeling

@ linear superposition of basis functions H(c, s):

w(s) = H(c,s)wc

ceA

e H(c,s) should form an orthonormal basis system:
H(c,c") = dcer
@ representing constant functions:

Vse$S ZH(C,S) =1
ceA
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Function Learning Parameterized SOM

PSOM: Function Modeling

@ simple polynomials along every grid dimension

piecewise linear functions:

m
e multiplicative combination of multiple grid dimensions: H(c,s) = H h” (sy, Ay)
v=1
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Function Learning Parameterized SOM

PSOM: Function Modeling

@ simple polynomials along every grid dimension

_ A
Lagrange polynomials: h(c,s) = H °-C

—c
c’€A, c’'#c
m
e multiplicative combination of multiple grid dimensions: H(c,s) = H h” (sy, Ay)
v=1
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Function Learning Parameterized SOM

Inverse Mapping

o find coordinates s* closest to observation w
N .
s = argmin ||lw — w(s
gmip [w — w(s)|
@ using gradient descent

Ser1 =St — 1 Vsw(st) - (w — w(st))

@ starting at closest discrete node

so = arg min [|w — w(s)]|
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Function Learning Parameterized SOM

Example: Kinematics Learning

1.5
1.257 1
0./ T
0.5 T
0,25 +
+ + +
-0.6 0.6 1.2
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Function Learning Unsupervised Kernel Regression

Outline

© Function Learning
Parameterized SOM
@ Unsupervised Kernel Regression
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Function Learning Unsupervised Kernel Regression

Unsupervised Kernel Regression [Klanke 2006]

@ learning of continuous non-linear manifolds

W R Aol el efer¥,

AN
p/
=
=
*
2
’-

@ generalizes from fixed PSOM grid

@ employs unsupervised formulation of Nadaraya-Watson estimator

Y = {y1,y2,...,yn} € RN observed data

X = {x1,x2,...,xy} € RN latent parameters

y = f(x; X) corresp. functional relationship

f(x; X) Z Vi Kx = xi) K(x —x;) = N(0,X) - Gaussian kernel
> K(x—x) ’
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Function Learning Unsupervised Kernel Regression

UKR Learning

Minimize reconstruction error

ROX) = 3 lym—F (s X2

init t=3 t=7 t=10 t=14 t =20 t =50
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Function Learning Unsupervised Kernel Regression

UKR Learning

Minimize reconstruction error

R(X) = %Z!lym—f_m(xm; X)||2 (leave-one-out CV)
m

init t=3 t=7 t=10 t=14 t =20 t =50
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Function Learning

Learned Manipulation Manifold

Unsupervised Kernel Regression

o M| 0% | 10% | 20% | 30% | 40% | 50% | €0% | 70% | 80% | 90% | 100%
- \E{ \'_g {f f‘:, f‘;/ @! ﬁ;/ ‘(‘;/ :@‘;/ &\;, \1{
3.5 \!{ "_g W& ey | d|dr| dy -3‘\;/ &Er \{l;
| W WA | | b7 | dr| RSV
".';'- WA | dr|dr| Yy ‘Nf "f_’.
M A ey | gy gy | | eV W
2.25 ‘g | 4| dr|dr|dr|er ¥y $‘! "i{
2.00 ‘g "';5 ‘fﬁ "j;’ Q"] ﬁ;/ &7 é‘;/ &‘Z’ \\\;/ \1{
15 W oy gy | dy| dr|dr ¥y \‘! W
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Function Learning

Sewne vieuer:

Latent space navigator:

manual autotR | autolT)



Function Learning




Perceptual Grouping

Outline

© Perceptual Grouping

Gestalt Laws

Competitive Layer Model
Kuramoto Oscillator Network
Comparison

Learning
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Perceptual Grouping Gestalt Laws

Outline

© Perceptual Grouping
o Gestalt Laws
Competitive Layer Model
Kuramoto Oscillator Network
Comparison
Learning
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Perceptual Grouping Gestalt Laws

Perceptual Grouping

Colour Segmentation Texture Segmentation

Segmentmg CeII Images Contour Grouping
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Perceptual Grouping Gestalt Laws

Gestalt Laws [Wertheimer 1923]

(closure [ continuation

CICIC] | X DO
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Perceptual Grouping

Gestalt Laws [Wertheimer 1923]

ITRIRI

Gestalt Laws

similarity

i ¢
C
4
4
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Perceptual Grouping Gestalt Laws

Interaction Matrix

— —
© —
v —
& —
O —
o m—
< —
oo m—
©

|

@ compatibility of feature pairs — > 12 345675809
induces interaction matrix —

—
— 5
—

— 7
— 3
—— 9

1

2
3
4
5
6
7
8
9

[l attraction: positive feedback

[l repulsion: negative feedback
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Perceptual Grouping Gestalt Laws

Interaction Matrix

target segmentation

@ compatibility of feature pairs
induces interaction matrix

@ block structure defines groups

interaction matrix
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Perceptual Grouping Gestalt Laws

Interaction Matrix

target segmentation

@ compatibility of feature pairs
induces interaction matrix

@ block structure defines groups

@ real features unsorted

@ and noisy

interaction matrix
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Perceptual Grouping Gestalt Laws

Interaction Matrix

target segmentation

@ compatibility of feature pairs
induces interaction matrix

@ block structure defines groups

@ real features unsorted

@ and noisy

= robust grouping dynamics

interaction matrix
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Perceptual Grouping Competitive Layer Model

Outline

© Perceptual Grouping
Gestalt Laws
@ Competitive Layer Model
Kuramoto Oscillator Network
Comparison
Learning
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Perceptual Grouping Competitive Layer Model

Competitive Layer Model (CLM) [Ritter 1990]

@ input: set of features

input: feature vector m,

examples:
@ position: m, = (x,,y,)"
@ oriented line features:
m, = (X, Yr, r) T
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Perceptual Grouping Competitive Layer Model

Competitive Layer Model (CLM) [Ritter 1990]

@ layered architecture of neurons

L] ° 1 ° [ ] [ ] ° L ..

i R o Llayersa=1,...,L
L] ° ° [ ] [ ] ° L ..

@ columns r of neurons

e® ¢ @ activation: linear threshold
teter I o(x) = max(0, x)

0 .
CJ ° ° L] [] ° L ..
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Perceptual Grouping Competitive Layer Model

Competitive Layer Model (CLM) [Ritter 1990]

© goal: grouping as activation within layers

L Gfete
<> D

<>
<R
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Perceptual Grouping Competitive Layer Model

Competitive Layer Model (CLM) [Ritter 1990]

© lateral compatibility interaction f,,» induces grouping

lateral interaction f,,/

& f,» — compatibility of feature pair

m, —mg
frr <0

e, %
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Perceptual Grouping Competitive Layer Model

Competitive Layer Model (CLM) [Ritter 1990]

© vertical competition: pushes groups to layers

vertical inhibition J
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Perceptual Grouping Competitive Layer Model

Competitive Layer Model (CLM) [Ritter 1990]

@ column-wise stimulation with feature-dependent bias

\
'g . K .) z, @ overall activity per column
( V2R o significance of feature m,
o
Gt
6. .,!,,D Q. ..'>
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Perceptual Grouping Competitive Layer Model

Competitive Layer Model (CLM) [Ritter 1990]

@ simulation of recurrent dynamics

overall dynamics
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Perceptual Grouping Kuramoto Oscillator Network

Outline

© Perceptual Grouping
Gestalt Laws
Competitive Layer Model
@ Kuramoto Oscillator Network
Comparison
Learning
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Perceptual Grouping Kuramoto Oscillator Network

Kuramoto Oscillator Network [Meier 2013]

@ more efficient grouping dynamics
@ based on coupled oscillators

o phase 0 and frequency w
o phase coupling by £,/

. K
0, = wr+ N Z:l frr - Sin(er’ - ar)
r'=
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Perceptual Grouping Kuramoto Oscillator Network

Kuramoto Oscillator Network [Meier 2013]

@ more efficient grouping dynamics
@ based on coupled oscillators

o phase 0 and frequency w
o phase coupling by £,/

@ phase similarity determines
frequency grouping

@ similar features share same frequency

: K &
0 = w+ N Z:l frrr - sin(0 — 0,)
r'=

(cos(6, —6,) + 1))

N~

Wy = wp-argmax frpr -
r 0 ga ( Z rr
r'eN(a)
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Perceptual Grouping Kuramoto Oscillator Network

Example: Contour Grouping

random

initialization update step 1 update step 2 update step 3 update step 4 update step 50
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Perceptual Grouping Comparison

Outline

© Perceptual Grouping
Gestalt Laws
Competitive Layer Model
Kuramoto Oscillator Network
o Comparison
Learning
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Perceptual Grouping Comparison

Evaluation: CLM vs. Oscillator Network

@ 10 groups a 100 features
@ 100 layers resp. 100 frequencies (only 10 needed)
o different amount of noise in interaction matrices

1 1
o5 | : 2 . 05
0 : % [
L : 0. 0.5
a ‘ & 1

0% 10% 20% 30% 40%

Figure : Interaction matrices with different amounts of inverted interaction values. Black pixel
represents attraction, white is repelling.
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Perceptual Grouping Comparison

Evaluation Results

@ similar grouping quality

(.l,LM
Oscillators

0.6 -

0.2 -

grouping quality, mean and stddev
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Perceptual Grouping Comparison

Evaluation Results

@ similar grouping quality
o reduced computational complexity

@ increased convergence speed

> >
3 300 1000 %
3 ' CLMI ' ' ' ' I l é'-M I I I 900 §
@ Oscillators Oscillators n
v 250 800 2
© ©
§ 200 700 ¢
g 600 “E-'
5 150 - - 500
g 400 &

L i @
o 100 w00
] 200 &
B 50 & °
P i 2o s e TSRS R EEER RIS m g
k) ol | S 0 :
* 0 5 10 15 20 25 30 31 32 33 34 35 36 37 38 39

% of noise % of noise
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Perceptual Grouping Comparison

Evaluation Results

similar grouping quality
reduced computational complexity
increased convergence speed

faster recovery on changing interaction matrix
(splitting from 10 to 20 groups after initial convergence)

100

CLM
Oscillators —>¢—
10 E

average number of steps

% 0

n oise
Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 33 /44



Perceptual Grouping Learning

Outline

© Perceptual Grouping
Gestalt Laws
Competitive Layer Model
Kuramoto Oscillator Network
Comparison
@ Learning
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Perceptual Grouping Learning

How to integrate learning?

@ recurrent dynamics robustly creates grouping
@ dynamics determined by interaction matrix f,,

@ How to learn compatibilities?
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Perceptual Grouping Learning

How to integrate learning?

@ recurrent dynamics robustly creates grouping
@ dynamics determined by interaction matrix f,,

@ How to learn compatibilities?

@ CLM dynamics extremly robust wrt. noise in interaction

— only learn coarse interaction matrix
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Perceptual Grouping

Compute more general distance function on feature pairs
Learn distance prototypes from labeled samples (VQ)
Exploit labels to count pos./neg. weighted prototypes

Overview:

roximity prototype -
Voronoi cell P yP P proximity space D
labeled positive coefficents

training \ \ *

data proximity \
vector d(m,, m,) e 7)/
D i ‘|l -@ m
KAJ?/Z clustering . /
. \ °

fr>0 ative coefficents - P ——
rr negative coefficents interaction function
>

e <0 . -




Imitation Learning

Outline

@ Imitation Learning
@ Dynamic Movement Primitives
@ Reinforcement Learning
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Imitation Learning

Imitation Learning

@ learn from observations

o How to observe actions?
o Which elements are important? What to learn?

o How to represent observed actions?

@ improving + adapting motion

e autonomous exploration

o Reinforcement Learning
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Imitation Learning

Imitation Learning

@ learn from observations
o How to observe actions?
o Which elements are important? What to learn?

o How to represent observed actions?
Dynamic Movement Primitives
@ improving + adapting motion
e autonomous exploration

o Reinforcement Learning
Policy Improvement with Path Integrals (PI?)

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 36 / 44



Imitation Learning Dynamic Movement Primitives

Outline

@ Imitation Learning
@ Dynamic Movement Primitives
Reinforcement Learning
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Imitation Learning Dynamic Movement Primitives

Dynamic Movement Primitives [ljspeert, Nakanishi, Schaal, ICRA’02]

@ spring-damper system generates basic motion towards goal

Tit:k-(g—xt)—c-)'(t

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time time
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Imitation Learning Dynamic Movement Primitives

Dynamic Movement Primitives [ljspeert, Nakanishi, Schaal, ICRA’02]

@ spring-damper system generates basic motion towards goal

T)'%t:k-(g—xt)—c-)'(t

0 0.2 0.4 0.6 0.8 1
time
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Imitation Learning Dynamic Movement Primitives

Dynamic Movement Primitives [ljspeert, Nakanishi, Schaal, ICRA’02]

@ add external force to represent complex trajectory shapes

Txt:k(g—xt)—cxt-l—g;ra

0 0.2 0.4 0.6 0.8 1
time
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Imitation Learning Dynamic Movement Primitives

Dynamic Movement Primitives [ljspeert, Nakanishi, Schaal, ICRA’02]

@ add external force to represent complex trajectory shapes

Tjét:k-(g—xt)—c-kt—i-g;ra

0 0.2 0.4 0.6 0.8 1
time
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Imitation Learning Dynamic Movement Primitives

Dynamic Movement Primitives [ljspeert, Nakanishi, Schaal, ICRA’02]

@ add external force to represent complex trajectory shapes

Txt:k(g—xt)—cxt-l—g;ra

time
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Imitation Learning Dynamic Movement Primitives

External Force

I UTTC IR

@ weighted sum of basis functions ¢;
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Imitation Learning Dynamic Movement Primitives

External Force

_ Ty _ Zi9i¢i(5)_ — ) s
f(s)_gte_ Z;¢i(5) (g 0)

@ weighted sum of basis functions ¢;

@ soft-max normalization
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Imitation Learning Dynamic Movement Primitives

External Force

0
f(s) = gTo — 2=200iS)
@ weighted sum of basis functions ;

@ soft-max normalization
@ amplitude scaled by initial distance to goal
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Imitation Learning Dynamic Movement Primitives

External Force

f(s) = 870 = L) (g —0)
@ weighted sum of basis functions ¢;
@ soft-max normalization
@ amplitude scaled by initial distance to goal

@ influence weighted by canonical time s — 0

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 38 /44



Imitation Learning Dynamic Movement Primitives

External Force

f(s) = 870 = L) (g —0) 1
@ weighted sum of basis functions ¢;
@ soft-max normalization
@ amplitude scaled by initial distance to goal
@ influence weighted by canonical time s — 0
@ Gaussian basis functions v;
Vi(s) = exp(—hj (s — ¢;)?) 00 1 S 2

[Schaal et al, Brain Research, 2007]
e ¢; logarithmically distributed in [0...1]
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Imitation Learning Dynamic Movement Primitives

Canonical System

_ o Tg 2ifils)
f(S) =8 0 = Zi wi(s) (g 0)

@ decouple external force from spring-damper evolution

@ new phase / time variable s

TS=—a-S

@ s initially set to 1 ...

@ ... exponentially converges to 0
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Imitation Learning Dynamic Movement Primitives

Canonical System

_ o Tg o 2ifils)
f(S) =8 0 = Zi wi(s) (g 0)

decouple external force from spring-damper evolution

new phase / time variable s

1

1+ac: (Xactua/ - Xexpected)2

TS=—qa-5S-

s initially set to 1 ...

. exponentially converges to 0

pause influence of force on perturbations
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Imitation Learning Dynamic Movement Primitives

Properties

TXt:k(g—Xt)—CXt+gZ—9
TS=—Q-S

_ T 2ibiils)
f(S) =8 0= Zi wi(s) (g 0)

convergence to goal g

motions are self-similar for different goal or start points
coupling of multiple DOF through canonical phase s
adapt 7 for temporal scaling

robust to perturbations due to attractor dynamics

decoupling basic goal-directed motion from task-specific trajectory “shape”

weights 6 can be learned with linear regression
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Imitation Learning Dynamic Movement Primitives

Learning from Demonstration

record motion x(t), x(t), X(t)

choose 7 to match duration

evolve canonical system — s(t)

frarget(s) = 7X(t) — k(g — x(t) — cx(t))

minimize E = Y _(frarget(s) — f(5))? with regression

5 4 o2 0 02 04 os 08 1

05 1
X X

[ljspeert, Nakanishi, Schaal, ICRA’02]

-1
3 08 06 04 02 0 02 o4 08 06 04 02 0 02 04 06 08 1 Y
X
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Imitation Learning Reinforcement Learning

Outline

@ Imitation Learning
Dynamic Movement Primitives
@ Reinforcement Learning
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Imitation Learning Reinforcement Learning

Robustifying Motions

@ motion from imitation learning is fragile
@ robustify by self-exploration

@ competing RL methods:

o PI? — Policy Improvement with Path Integrals [Stefan Schaal]

o PoWeR — Policy Learning by Weighting Exploration with the Returns [Jan Peters]

Robert Haschke (CITEC) Learning — From Physics to Knowledge Sep 2013 42 / 44



Imitation Learning Reinforcement Learning

Policy Improvement with Path Integrals — PI? [Evangelos 2011]

@ Optimize shape parameters 6 w.r.t. cost function J
@ Use direct reinforcement learning

o Exploration directly in policy parameter space 6

e Use Policy Improvement with Path Integrals — PI?

o Derived from principles of optimal control

o Update rule based on cost-weighted averaging (next slide)
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters 6 [Figures from Stulp]
200
15
1 0r 4
8 05 < 200} ¢ 1
0
-400 | B
-05
0 0.2 0.4 0.6 0.8 1 -400 -200 0 200
time ¢ (s) 0,

T)-et = k(g — Xt) — C)‘(t)

+gl 6
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters 8 , cost function J [Figures from Stulp]

0 02 04 06 08 1
time ¢ (s)

T)-et = k(g — Xt) — C)‘(t)
+gl 6
J(7i)
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters @ , cost function J
While (cost not converged)

Explore

15
1

5 05 g
0
-0.5

0 0.2 0.4 0.6 0.8 1 -400 -200 0 200
time ¢ (s) 0
T)-et = k(g — Xt) — C)'(t)
+gl 0
J(T,‘)
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters 8 , cost function J [Figures from Stulp]
While (cost not converged)

Explore
sample exploration vectors

5 05 b
[ 0.2 :;net ((;)5 0.8 1 -400 -2?l 0 200
TX = k(g - Xt) - th) €k ~ N(O, }:)
+gz—(0+€i,k) O, =0+ ¢
J(7i)
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters 8 , cost function J [Figures from Stulp]
While (cost not converged)

Explore
sample exploration vectors
execute DMP

=)

~N® ©

5 05 .
[ 0.2 :;net ((;)5 0.8 1 -400 -2?l 0 200
TX = k(g - Xt) - th) €k ~ N(O, }:)
+gz—(0+€i,k) O, =0+ ¢
J(7i)
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters 8 , cost function J [Figures from Stulp]
While (cost not converged)

Explore
sample exploration vectors
execute DMP
determine cost

=)

~N® ©

.
5 05
o4
1
3
05 " 123 45678 9 10
0 02 04 06 08 1 -400 200 ) 200 A 08 " -
time ¢ (s) 0, cost J(7)
TX = k(g - Xt) - th) €k ~ N(O, }:)
T —
+g; (0+e€ix) 0k =0+ e
J(7i)
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters 8 , cost function J [Figures from Stulp]
While (cost not converged)

Explore Update
sample exploration vectors weighted averaging

execute DMP with Boltzmann dist.
determine cost

04

°
@
&

o1
|

o
@
)

°
i
S

probability P(r)
-
2

e3
y T\
0.05 '4\5
878 9 10
-400 -Zﬂeol 0 200 0] p J(T) 12
5 . oy ep(=AT (Tik)
i = klg —x) ~ ck) €is ~ N (0. ) PTi) = 5 ool A (i)
+g/(0+¢€ix) 0k =0+ ek K
J(r) B0, =) P(Tik)eix
k=1
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters 8 , cost function J [Figures from Stulp]
While (cost not converged)

Explore Update
sample exploration vectors weighted averaging
execute DMP with Boltzmann dist.
determine cost parameter update

/
-400 -Zﬂeol 0 200 2 04 06 08 i -\
. . ~exp(=AT1 (T k)
%= K(g ) - %) cri~ N(0.) PT) = el X 1)
+g/(0+e€ix) 0, =0+¢€ K
J(7i) 0+ 6+ N6 Al = ; P(Ti k)€K
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Imitation Learning Reinforcement Learning

Input: DMP with initial parameters 8 , cost function J [Figures from Stulp]
While (cost not converged)

Explore Update
sample exploration vectors weighted averaging
execute DMP with Boltzmann dist.
determine cost parameter update

0 0.2 0.4 0.6 0.8 1 -400 -200 0 200 2 04 06 08 1 1

time ¢ (s) 01
i ' . exp(—)\_lJ(T,-J())
X = k(g — xt) — cXt) ik ~N(0,X) PTix) = Yo exp(=A"(Tik))
+8/(0+e€ix) 0k =0+ ek K
J(r) 6+ 0+ A0 Ab,; = kz:l P(Tik)eix
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