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Introduction Dynamic Movement Primitives Reinforcement Learning

Motivation

I shift to reactive motion generation ...

I ... using dynamical systems

I robustify movement skeletons

I What are suitable motion representations?

Dynamic Movement Primitives (DMP)

I How can we improve by explorative learning?

Policy Improvement with Path Integrals (PI2)
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Introduction Dynamic Movement Primitives Reinforcement Learning Goal-Directed Motion Periodic Motion

Dynamic Movement Primitives
Ijspeert, Nakanishi, Schaal, ICRA’02

I motion as evolution of dynamical system

I basis: spring-damper-system

τ v̇t = K (g − xt)− D vt

τ ẋt = v

or

τ ẍt = α(β(g − xt)− ẋt)

I x - current position

I x - current velocity

I g - goal of motion

I choose K and D to have critical damping
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Dynamic Movement Primitives
Ijspeert, Nakanishi, Schaal, ICRA’02

I spring-damper system generates basic motion towards goal

τ ẍt = α(β(g

⇑

− xt)− ẋt)

+ gT
t θ

⇑

v
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Dynamic Movement Primitives
Ijspeert, Nakanishi, Schaal, ICRA’02

I new idea: add external force to represent complex trajectory shapes
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External Force

f (s) = gT
t θ =

∑
i θiψi (s)∑
i ψi (s)

· (g − x0) · s

I weighted sum of basis functions ψi

I soft-max

I amplitude scaled by initial distance to goal

I influence weighted by canonical time s → 0

ψi (s) = exp(−hi (s − ci )
2)

I Gaussians

I ci logarithmically
distributed in [0 . . . 1]

0

1

0 21 s

from Schaal et al, Progress Brain Research, 2007
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Canonical System

f (s) = gT
t θ =

∑
i θiψi (s)∑
i ψi (s)

· (g − x0) · s

I decouple external force from spring-damper evolution

I new phase / time variable s

τ ṡ = −α · s

I s initially set to 1 ...

I ... exponentially converges to 0

I pause influence of force on perturbations
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Properties

τ ẍt = α(β(g − xt)− ẋt) + gT
t θ

τ ṡ = −α · s

f (s) = gT
t θ =

∑
i θiψi (s)∑
i ψi (s)

· (g − x0) · s

I convergence to goal g

I motions are self-similar for different goal or start point

I coupling of multiple DOF through canonical phase s

I adapt τ for temporal scaling

I robust to perturbations due to attractor dynamics

I decoupling basic goal-directed motion
from task-specific trajectory “shape”

I weights θi can be learned with linear regression
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Learning from Demonstration

I record motion x(t), ẋ(t), ẍ(t)

I choose τ to match duration

I integrate canonical system → s(t)

I ftarget(s) = τ ẍ(t)− α(β(g − x(t))− ẋ(t))

I minimize E =
∑

s(ftarget(s)− f (s))2

with regression

from Ijspeert, Nakanishi, Schaal, ICRA’02
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Periodic Motion

I replace canonical system by limit cycle oscillator

τ φ̇ = 1 mod 2π

f (φ,A) = A ·
∑

i θiψi (φ)∑
i ψi (φ)

ψi (φ) = exp (hi · (cos(φ− ci )− 1))

I φ - phase of oscillation

I A - amplitude of oscillation

I ψi - van Mises basis functions, i.e. Gaussians living on a circle
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Periodic Motion - Examples
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Fig. 10. Modification of thelearned rhythmicdrummingpattern (flexion/extension of theright elbow, R_EB). (A) Trajectory learned
by therhythmicDMP; (B) temporarymodification with A’ 2A in Eq. (16); (C): temporarymodification with t’ t/2 in Eqs. (9) and
(15); (D): temporarymodificationwith g’ g+1in Eq. (9) (dotted line). Modifiedparameterswereappliedbetween t¼3sand t¼7s.
Notethat inall modifications, themovementpatternsdonot changequalitatively, andconvergenceto thenewattractor under changed
parameters is very rapid.

from Schaal et al, Progress in Brain Research, 2007
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Robustifying Motions

I motion from imitation learning is fragile

I robustify by self-exploration

I competing RL methods:
I Stefan Schaal:

PI2– Policy Improvement with Path Integrals
I Jan Peters:

PoWeR – Policy Learning by Weighting Exploration with the Returns
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Policy Improvement with Path Integrals – PI2

Evangelos Theodorou, PhD’11

I Optimize shape parameters θ w.r.t. cost function J

I Use direct reinforcement learning
I Exploration directly in policy parameter space θ

I Use Policy Improvement with Path Integrals – PI2

I Derived from principles of optimal control
I Update rule based on cost-weighted averaging (next slide)

Robert Haschke Learning Manipulation Patterns



Introduction Dynamic Movement Primitives Reinforcement Learning PI2

I Input: DMP with initial parameters θ

, cost function J

I While (cost not converged)

Explore
sample exploration vectors
execute DMP
determine cost

Update
weighted averaging

with Boltzmann dist.
parameter update

τ ẍt = α(β(g − xt ) − ẋt ) + gTt

(

θ

+ εi,k )

J(τ i )

εi,k ∼ N (0, Σ)

θk = θ + εk

θ ← θ + ∆θ

P(τ i,k ) =
exp(− 1

λ
J(τ i,k ))∑

k exp(− 1
λ

J(τ i,k ))

∆θti
=

K∑
k=1

P(τ i,k )εi,k
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Some Advantages of PI2

I Applicable to very high-dimensional spaces
Stulp, F., Buchli, J., Theodorou, E., and Schaal, S. (2010). Reinforcement learning of full-body humanoid motor skills.

In 10th IEEE-RAS International Conference on Humanoid Robots. Best paper finalist.

I no gradient ⇒ deals with discontinous noisy cost functions

I update ∆θ within convex hull of εk ⇒ safe update rule

Robert Haschke Learning Manipulation Patterns


	Introduction
	Dynamic Movement Primitives
	Goal-Directed Motion
	Periodic Motion

	Reinforcement Learning
	PI2


