Machine Learning Library
|
![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | Angle based metric object |
![]() ![]() | ANOVA kernel function |
![]() ![]() | Base class of object serialization |
![]() ![]() | Topology class for n dimensional cartesian grid |
![]() ![]() | |
![]() ![]() | Base class for cluster algorithms |
![]() ![]() | CoCosine metric object Template class for metric based on scalar product |
![]() ![]() | Constante learn rate Template class for constant learn rates |
![]() ![]() | |
![]() ![]() | Manages pairs of input and output vectors |
![]() ![]() | Single item of a dataset consisting of a pair of input and out vectors |
![]() ![]() | |
![]() ![]() | Template object for vectors of single and double precision and integer |
![]() ![]() | Double-Exponential kernel function |
![]() ![]() | |
![]() ![]() | Euclidean metric object |
![]() ![]() | Euclidean2 metric object |
![]() ![]() | |
![]() ![]() | Exponential decreasing learn rate Template class for exponential decreasing learning rates. The learning rate is defined as initial*(final/initial)^(t/tmax).) |
![]() ![]() | |
![]() ![]() | Gaussian kernel function |
![]() ![]() | |
![]() ![]() | Hyperbolic metric object |
![]() ![]() | Topology class describing two dimensional hyperbolic lattice structure |
![]() ![]() | Base class for kernel functions Base class for kernel function used for example by the support vector machine |
![]() ![]() | Base class for all learning rate functions Template base class for all learning rates (virtual) |
![]() ![]() | Linear kernel function |
![]() ![]() | Linear decreasing learn rate Template class for linear decreasing learning rates |
![]() ![]() | Manhatten metric object |
![]() ![]() | Template object implementing a matrix of single and double precision elements |
![]() ![]() | Maximum metric object |
![]() ![]() | Base class for metrix objects |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | Base class for all object |
![]() ![]() | Produces objects of given name and type |
![]() ![]() | Base class for optimisation techniques; .. |
![]() ![]() | Plummer kernel function |
![]() ![]() | Polynomial kernel function |
![]() ![]() | Base class for projection algorithms like PCA, ICA, KPCA, etc |
![]() ![]() | Scalar metric object Template class for metric based on scalar product |
![]() ![]() | SOM class for Self Organizing Maps with arbitrary topology |
![]() ![]() | |
![]() ![]() | Sparse, immutable vector representation |
![]() ![]() | Triangular kernel function |
![]() ![]() | Templatized vector for numerical applications |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() |