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Abstract— This paper reports an object classification method
based on tactile information obtained by a magnetorheological
elastomer-gel tactile sensor that we have been proposing. We
hypothesize that the characteristic spatial response of our
sensor contributes to classify objects because its spatial response
is a difference of Gaussian (DoG), which is a edge enhancement
filter. We compared the accuracy of classification between
sensor outputs with the DoG like spatial response and without it
(simple Gaussian like response). Our experimental result shows
that the accuracy is higher in DoG like spatial response in most
cases, and it supports our hypothesis.

I. INTRODUCTION

Object classification is a crucial task for robots to handle
various objects in dexterous. Various classification methods
based on tactile information have been reported, and many
of them extract feature vectors by using software filters
or analytical algorithms from raw sensory signals [1-3]. In
contrast, a magnetic flexible tactile sensor we have been de-
veloped [4] has a potential to partly reduce these processing
costs because its spatial response is not a commonly seen
Gaussian-like one but a difference of Gaussian (DoG)-like
one, which is known to work as a edge enhancement filter.
However, we should verify whether such a characteristic
spatial response increase object classification accuracy.

In this study, therefore, the accuracy of object classifica-
tion for nine different object cases with support vector ma-
chines was compared between two spatial response settings,
which are a DoG-like one and Gaussian-like one.

II. OBJECT CLASSIFICATION METHOD

A. Magnetorheological Elastomer-Gel Tactile Sensor

Fig. 1 shows the appearance and structure of the minimum
setup of the proposed tactile sensor [4]. The sensor consists
of a flexible dual-layer elastomer (W 150mm x L 150mm
x H 12mm) and a printed circuit board holding a magnet
and a magnetic sensor. The upper layer of the elastomer
is magnetorheological elastomer that contains high magnetic
permeability particles (e.g. iron powder) and the lower one is
non-magnetic elastomer. This sensor detects applied contact
loads as changes of the magnetic flux distribution.

We found the proposed sensor has a bipolar spatial
response, and the spatial response can be modeled by a
difference of Gaussian function, which is a famous edge
enhancement filter. Fig. 2 shows the spatial response of the
sensor obtained by applying 5-mm depth directional defor-
mation with a cylindrical indenter having 10-mm diameter.
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Fig. 1. Appearance and structure of the proposed tactile sensor that can
detect applied depth directional deformation as a change of magnetic field.

-40 -20 0 4020

-2
0

0
4

0
2

0

x [mm]

y
 [m

m
]

-4
0

0
.9

0
.6

0
.3

0
-0

.1
5

se
n

so
r 

o
u

tp
u

t 
[V

]

Fig. 2. Difference of Gaussian like spatial response of the proposed sensor
with one magnet located at the origin.

The sensor has a positive response area around the magnet
(approx. within 30 mm diameter) and a negative area (within
70 mm diameter) outside the positive area.

Although we used one pair of a magnet and a magnetic
sensor as shown in Fig. 1 in previous works, we used four
pairs of a magnet surrounded by four magnetic sensors to
obtain richer tactile information as shown in Fig. 3. These
four magnets were located at each edge of a 30 mm grid, i.e.
positive response areas for these magnets were contiguous.

B. Experimental setup and conditions

Fig. 4 (a) shows the experimental setup, and Fig. 4(b)
illustrates bottom shapes of objects and their indexes for
classification. These objects were attached to a three axis
robot stage (IAI corp., TTA-C3-WA-30-25-10, positioning
accuracy: 20µm), and the stage automatically pressed the
objects at the center of the grid of magnets against the sensor
with 5 mm depth. The sensor outputs were measured 100
times for each case.

To evaluate the classification ability of our sensor, we set
nine objects in three levels of classification difficulty:

1) Shape classification with small objects (cases 1-3).
10 mm size indenters with square, circle, and triangle
bottoms were prepared as difficult cases. Contact areas
of these indenters for the sensor overlapped with the
negative areas of sensors’ outputs (i.e., outside of any
positive areas).
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Fig. 3. Arrangement of 4 magnets and 16 magnetic sensors onx-y plane.

2) Shape classification with middle-size objects (cases
4-6). 20 mm size indenters with square, circle, and
triangle bottoms were prepared as standard cases.
Contact areas of these indenters cover several positive
and negative areas only inside the grid of magnets.

3) Orientation classification with a long object (cases
7-9).A indenter having rectangular bottom with 10 mm
width and 60 mm length was prepared as easy cases.
The indenter was pressed onto the sensor surface in
different angles against thex-axis in each case (0, 45,
and 90 deg. for the objects 7, 8, and 9, respectively).
Contact areas in these cases cover several positive and
negative areas inside and outside the grid of magnets.

C. Object classification algorithm

In order to classify various shape objects based on tac-
tile information, we employ a support vector machine that
was implemented with LIBSVM (https://www.csie.ntu.edu.
tw/˜cjlin/libsvm/) as C-SVM with a RBF kernel. The param-
eters of SVM were set as follows:σ = 1/9,C = 1, and eps =
0.001. Input features for the SVM were a set of sensor output
voltages of 16 magnetic sensors and the task of the SVM was
to distinguish the contact object from other eight objects. To
investigate whether and how the DoG like feature of the
sensor contributes to increase the classification accuracy, we
compared the performances between two settings of the input
features: The first one (DoG setting) contains negative values
of the sensor outputs by using DoG like outputs as they are.
The second one (Gaussian setting) contains only the positive
values by cutting out the negative values.

III. RESULTS AND DISCUSSIONS

Table 1 (a) and (b) summarize the confusion matrices of
classification accuracy in the DoG setting and the Gaussian
setting, respectively. The correct answer rates are highlighted
with black background. In the easy cases 7-9, the accuracies
were 100% in the whole case. In the standard cases 4-6,
the accuracies were higher in the DoG setting than in the
Gaussian setting, and they were over 80%. In the difficult
cases 2 and 3, the accuracies were higher in the DoG setting
and they were over 30%. In the case 1, the accuracy was
lower in the DoG setting.

Thus, in most cases, the DoG setting increased accuracy,
and the each accuracy exhibits over 80% in standard and
easy cases. This indicates our sensor has a fine classification
ability if contact objects cover several positive response
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Fig. 4. Experimental setup. Nine types of objects were pressed onto the
sensor surface with 5 mm depth. (a) Appearance of the setup. (b) Bottom
shape of the nine objects used in this study. Objects 7, 8, and 9 had the
same rectangular shape but different angles against thex-axis.
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(b) Confusion matrix in the Gaussian setting.

(a) Confusion matrix in the DoG setting.
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areas. In contrast, the accuracy was appear to be decreased
by the DoG setting in the case 1. This should be considered
as the result that the DoG setting increased the accuracies
in the case 2 and 3. We can find the classification tendency
toward the case 1, e.g., the case 3 and 5 were misclassified
as the case 1 over 75% cases in the Gaussian setting.

Our results show that DoG feature of our sensor improved
the object classification ability and suggested the accuracy
was over 80% if the objects covered several positive and
negative response areas. This suggest that the DoG feature
contributes the classification tasks. Further experiments are
required to conclude this hypothesis and to understand the
mechanism of the accuracy improvement.
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