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ABSTRACT

We describe an augmented reality system designed for on-
line acquisition of visual knowledge and retrieval of memo-
rized objects. The system relies on a head mounted cam-
era and display, which allow the user to view the environ-
ment together with overlaid augmentations by the system.
In this setup, communication by hand gestures and speech
is mandatory as common input devices like mouse and key-
board are not available. Using gesture and speech, basi-
cally three types of tasks must be handled: (i) Communi-
cation with the system about the environment, in partic-
ular, directing attention towards objects and commanding
the memorization of sample views; (ii) control of system
operation, e.g. switching between display modes; and (iii)
re-adaptation of the interface itself in case communication
becomes unreliable due to changes in external factors, such
as illumination conditions. We present an architecture to
manage these tasks and describe and evaluate several of its
key elements, including modules for pointing gesture recog-
nition, menu control based on gesture and speech, and con-
trol strategies to cope with situations when vision becomes
unreliable and has to be re-adapted by speech.
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1. INTRODUCTION

For several years now, we are witnessing a dramatic de-
crease in the costs of sensors and computing or communi-
cation devices. As a consequence, the way we interact with
computers, machines or even household applications is about
to change: computing hardware is becoming ubiquitous or
wearable, rooms are becoming smart, space is becoming the
interface and interaction is becoming seamless and intelli-
gent (cf. e.g. [7, 19, 24, 26]). Naturally, intelligent interac-
tion calls for multimodality.

Since communication and interactions among humans are
inherently multimodal, seamless interaction with machines
calls for multimodality as well. Furthermore, as human
interaction relies on human senses, multimodal interfaces
should regard perceptual modalities which meet human needs,
i.e. they should enable visual and acoustic interaction (cf.
[18]). This, however, requires techniques for robust image
and speech understanding. As discussed in the panel ses-
sions at ICMI’03, robust recognition requires learning and
adaption.

In this paper, we will present a prototype of a situated
intelligent system with advanced interfaces for information
retrieval. It is designed to recognize objects in an office en-
vironment, to store this kind of information and to make it
available for its users if asked for. By means of interaction
using gesture and speech recognition, the system can learn
and extend its predefined knowledge about its surroundings.
The prototype discussed in this paper is fully mobile. Wear-
ing a head mounted device with cameras and an augmented
reality display, the user perceives his environment as well as
information generated by the system.

2. MOTIVATION AND RELATED WORK

In traditional intelligent interface research, model acquisi-
tion and recognition processes for interaction are decoupled
in time and control: First, a set of handcrafted or learned
object models is given to the system. Then, the models
are used in order to accomplish the recognition tasks nec-
essary for intelligent and seamless interaction. Especially
when it comes to communicating about visual percepts, this
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settings. First of all, it is impossible to design a complete set
of objects and activities. Secondly, human-machine interac-
tion in dynamic environments will require to solve ad-hoc



tasks in contrast to a set of pre-specified tasks which were
thought of when designing the system.

While there has been a lot of work concentrating on single
aspects to overcome this shortcomings, e.g. generic object
recognition [4], contextual object recognition [13], percep-
tion action cycle approaches [1], or one-shot object learn-
ing [17], there has been little work on systems that inte-
grate different techniques and realize the complex but ro-
bust performance required in everyday environments. Early
attempts in this area were reported by Hanson and Riseman
[10]. Other approaches that do not include the possibility of
learning new concepts include [6, 8]. A quite promising ap-
proach to learning grounded representations of the world by
means of interaction has been reported by Roy [21]. Word
semantics are learned from parallel speech and image data.
The recently proposed Cognitive Vision System paradigm
[5] even goes one step beyond for it considers integrated
systems that are embedded in the world, interact with their
environment to gather knowledge and articulate their knowl-
edge by changing the state of the environment. Our system
follows this paradigm: Working in an everyday office envi-
ronment, the user wears a head-mounted device equipped
with cameras and a display [22]. Information about recog-
nized objects and results of user queries are visualized using
augmented reality. Also, by means of displaying status mes-
sages and prompts the system can communicate with its
user. This closes the perception-action cycle; asking for ma-
nipulations of the environment in order to study their effects
can accomplish interactive object and event learning.

In the following, we will describe the system “top down”,
starting with a brief description of the intended final func-
tionality (section 3.1) and the required user interface (sec-
tion 3.2), over a technical description of its components
(section 4) to the evaluation of isolated functionalities (sec-
tion 5).

3. SYSTEM DESCRIPTION

The prototype described here is being developed within
the VAMPIRE project!, which is aimed at investigating
an active visual memory for interactive retrieval in an aug-
mented reality scenario.

3.1 Augmented Reality Scenario

In the prototype scenario, a user wears a helmet with
two cameras as artificial eyes, which view the area in front
(Fig. 1). The user sees the camera images via a head mounted
display. As an overlay to the scene, both the system out-
put (“augmentations of reality”) and tools such as buttons
and menus for interaction are displayed. An inertial sensor
allows to keep track of movements of the user [22].

The functionality of the system is that of a “personal as-
sistant”, who has knowledge about objects in the environ-
ment. Object knowledge is mainly acquired online by in-
structions of the user, who references objects by pointing
gestures. Once the system is adapted to the environment, it
can answer queries for information about objects by display
of augmentations, or retrieve “lost” objects.

The project is not aimed at the development of an actu-
ally “wearable” system. Rather, the focus is on the devel-
opment of an active memory and methods for multimodal
interaction, therefore, no effort was spent on miniaturized

! http://www.vampire-project.de

Figure 1: User with head mounted cameras and dis-
play. The input is looped back into the display and
enhanced by visual augmentations.
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Figure 2: System architecture: Input modules run-
ning in parallel are evaluated by a central control
module, realized as a state machine. State tran-
sitions reflect varying modes or tasks. The state
machine is the “client” of the visual and auditory
output servers, to which it directs its output.

H
—

I_’



| Focus Pis

Polnting

Figure 3: Top: The user has chosen to see augmen-
tations of focus points and corresponding bounding
boxes of objects, that were found by the attentional
subsystem. The pointing recognition is switched on
in the menu and the correct recognition of the finger
and the pointing direction is visualized as a high-
lighting beam. Bottom: Example of a saliency map
for the above scene.

hardware. Instead, the user wears a backpack with a laptop
which performs frame grabbing, early image processing, vi-
sualization, audio in/output and communication tasks. It is
connected to additional processing units via wireless LAN.

3.2 Multimodal Interface

A major challenge of the outlined system is that human-
machine interaction has to take place without any tradi-
tional devices (mouse, keyboard), but relies entirely on hand
gestures and speech input. Another complication is that
there are basically three types of interaction:

1. Communication about the environment, i.e. reference
to objects, asking for particular information, showing
objects to the system,

2. Interaction with the system itself, e.g. switching into
different modes or “escape” to a start off mode,

3. Re-adaptation of the input devices in case of erroneous
recognition of user input, e.g., re-adaptation to skin
color under different illumination conditions.

We will describe the interface first from the point of view of
the user, the next section outlines the technical implemen-
tation.
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Figure 4: Menu control by fingertip: The user car-
ries out a “pressing” gesture on a button. The sys-
tem analyzes the position and the movement trajec-
tory to recognize ”Selected” and ”Pressed” events.

3.2.1 Menu based control

For communication with the system, on the right hand
side of the image a semi transparent menu is overlaid. Fig. 4
shows the “Main” menu, which is displayed after initializa-
tion or after an “Escape” signal. There are three types of
menu buttons: Triggers, which cause a certain action to
be carried out, checkbuttons, which can be turned “on” or
“off”, and sets of exclusively coupled Radiobuttons. The lat-
ter work like checkbuttons, but pressing one button turns off
another.

To ensure a reliable menu communication, all types of
buttons must be first selected, then pressed. Selection can
be carried out by speech, naming the label of the button, or
by gesture. In this case, the user indicates a button with his
finger. After selection by gesture, the button can be pressed
either using speech (“Yes”), or by moving the finger inwards.
If a button was selected by speech, it must also be “pressed”
using speech. Menu operation is accompanied by visual and
auditory feedback for selection and pressing. Of the various
functionalities controlled by menus, the most essential ones
will be discussed in the following.

3.2.2 Object reference

For interaction with the memory, the user can reference
objects by pointing gestures. The system is sensitive to
pointing only when the hand is held in the lower part of
the visible area. A major problem of pointing gestures is
the accurate detection of pointing direction. The difficulty
is caused mainly by two factors: Firstly, a hand has many
degrees of freedom, i.e. the same gesture may have many
different appearances. Secondly, humans are not used to
precise pointing, because vagueness of pointing is resolved
by context knowledge — during discourse, pointing gestures
mostly select between already known alternatives.

Here, the problem is solved by two complementing strate-
gies: Pre-selection of salient areas by attentional mecha-
nisms, and system feedback. Since an understanding of



natural scenes is still far beyond the capabilities of a ma-
chine, real contextual knowledge is not available. But in-
stead, purely data driven methods can provide information
about image regions which are “salient” or “interesting” in
the sense of general, context free measures. As described in
section 4.5, such measures are used to select only the most
salient points of the input image, and offer only these lo-
cations to the user as possible pointing targets. In other
words, the task of selecting an arbitrary point from a large
3D-volume is reduced to the task of selecting a 2D-position
out of a limited set.

Salient locations are presented to the user as a set of over-
laid markers, indicating possible pointing targets (Fig. 3).
When a pointing gesture is carried out, the detected point-
ing direction is visualized as a system feedback (Fig. 3). So
in case of errors, the user can e.g. make the pointing fin-
ger better visible to the system, or even adapt skin color
detection if necessary.

3.2.3 Obiject learning / re-learning

The system has a built-in neural object recognition system
which can be trained online. The complexity of the scene
is so far restricted to a flat table in front of the user. For
object learning, there are menu buttons to make either a
novel object known to the system or to supply additional
sample views of a known but so far incorrectly classified one
(Fig. 5). In both cases, the user will be asked to place the
object first in a certain reference position. When the first
image has been captured, auditory feedback is given and
the user is asked to turn the object to another pose, and
so on. More views improve classification, but the decision
how many views are captured is left to the user. In our
experiments a reasonable number proved to be about 20
views. After view sampling, within about one second a new
object classifier is available, which is, however, provisional
and not yet fully trained to exploit the new object views. So,
a running version is available at once, though still at reduced
performance. In a parallel thread, a new classifier is trained
thoroughly in the background within several minutes. When
ready, it replaces the provisional classifier without requiring
any action of the user.

3.2.4 Skin color adaptation

Skin color detection is crucial to both manual menu con-
trol and pointing recognition. Since a universal model of
skin color does still not exist, detection may be influenced
by variations of the lighting conditions. Consequently, as
described in section 4.2, a flexible skin color model is used
that can be easily adapted. In case of unsatisfactory results,
the user can command the system — preferably by speech
— to overlay the segmentation results (Fig. 6). Adaptation
can be started by another command which makes a small
frame appear. Samples of skin color can now be acquired,
triggered again by speech input. Adapting the system to
the new samples takes less than 0.5 seconds.

3.2.5 Activating fallback mode

Under very bad external conditions, both gesture and
speech control may fail. In this case, the user can acti-
vate a fallback mode by covering the cameras with a hand
for about a second. In this case, the system aborts all tasks,
deactivates speech and returns to the main menu. Skin color
detection, which is crucial for the gesture based menu con-

Figure 5: Online Learning Mode: The user points
at an object, in this case the cup, which has been
falsely classified to be ”SCOTCHTAPE”. The sys-
tem highlights the object that is pointed at. By
selecting "Rec View” from the menu, a shot of the
object is added to the view database. When enough
shots of the object have been taken, the user can
initiate the classifier training by choosing ” Apply”
from the menu. Currently, labels have still to be
typed by a keyboard, this will be replaced by speech
recognition in future versions.

trol, is replaced by a simple thresholding mechanism: The
user is expected to look at a white surface (e.g. a piece of
paper), such that a finger will appear dark by comparison.
As dark objects are now considered as fingers, the menu can
now be controlled again safely and skin color adaptation be
performed.

4. TECHNICAL DESCRIPTION OF MAIN
MODULES

As a complete system description is beyond the scope of
this paper, we sketch its main components.

4.1 System structure and control

The system consists of several independently running mod-
ules which are organized in a flat architecture. There are
basically three types of components: Input modules for pro-
cessing of vision and speech, output modules for display of
augmentations and menus as well as auditory feedback, and
a control module (Fig. 2).

The input modules are independent of each other and pro-
vide a continuous stream of processing results. The con-
trol module is realized as a finite state machine. Its state
depends on the current task, e.g. acquisition of samples,
detection of pointing gestures, or menu interaction. De-
pending on the state, the control module selectively eval-
uates the currently relevant data from the input modules,
switches between states, and sends data to the output mod-
ules. The latter displays augmentations, give auditory feed-
back, and show appropriate menus, highlighting, etc. The
output modules are in the role of servers, which act on re-
quests of the client, i.e. the control module. For efficiency,
the control module deactivates currently not needed input
modules.

Since the focus of the paper is on input modalities, a de-
tailed sketch of the control flow and output modules can



Figure 6: Skin color adaptation: Above: First, a
visualization of the of the skin color segmentation is
shown by marking all pixels detected as skin color
white. Obviously , the segmentation performs badly
since most white pixels are located on the wooden
table and almost none on the hand. The user now
moves the hand underneath the target to record skin
color samples by choosing ”Record” from the menu.
Below: After recording several samples, parameters
of the skin color segmentation have been adjusted
automatically. Segmentation is satisfactory now.
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Figure 7: Output of the object recognition module.

not be given. In the following, the input modalities will be
described and evaluated.

4.2 Skin color detection

Skin color segmentation serves the selection of candidate
regions for fingers and hands. Though the skin color module
plays the role of an attentional subsystem, it is implemented
as a processing branch independent from the attention mod-
ule (section 4.5), because, firstly, hands or fingers are not of
interest as “learnable” objects, and secondly, the correct de-
tection of hands is crucial for interaction, so attention should
never be distracted by other salient regions.

Caused by the expeditious changes of the illumination
conditions, online adaption of the skin color segmentation
module became mandatory. As an online trainable skin
color classifier we apply the model of Stoerring [2], who ver-
ified that the overall skin color distribution is a shell-shaped
area in the r-g color space that is called the skin locus.
The color space is determined by r = R/(R+ G + B) and
9=G/(R+G+ D).

The skin locus can be well fitted by two parabolae in the
two dimensional color space [23]. When started, the sys-
tem first applies pre-defined standard parameters for the
parabolae. If skin segmentation is unsatisfactory, the user
can activate an adaptation mode. In this case, the color
distribution is derived from the user’s hand, held in a high-
lighted frame of the displayed image. The center of mass
and the standard deviation of the color distribution are es-
timated, then the parameters of the two quadratic functions
are adapted to enclose the new color distribution. This is
done by setting the r-coordinates of the angular points to
the center of mass and the g-coordinates to two times the
distance of the standard deviation.

The user is asked to hold his or her hand into the high-
lighted frame several times to gather samples. When the
newly fitted skin locus is available, the new segmentation
results are displayed. The user can now decide whether to
apply the new segmentation, gather still more samples, or
use the old segmentation.

4.3 Trainable object recognition

The module for object recognition facilitates a fast and
easy to adapt classification of image patches which are can-
didate regions for objects. It is based on a neural architec-
ture called “VPL” described in detail in earlier work, see
[12] and references therein. In short, the VPL-classifier con-
sists of three processing stages: The first two layers perform
feature extraction by means of local principal component
analysis (PCA), which is implemented in the separate steps
of clustering the raw input data by vector quantization (“V-
layer”) and a subsequent local PCA (“P-layer”). This rela-
tively simple implementation of local PCA facilitates a fast
training and avoids the need to search for suitable training
parameters. The third layer consists of several neural clas-
sifiers of the local linear map type (“L-layer”), which map
the extracted features to any desired output vector. For ob-
ject recognition, the output vector has one component for
each of the objects, which indicates the probability that a
certain object is presented. The final classification is the
object with maximum probability.

The VPL-classifier is particularly well suited for the present
tasks, because it can be trained in two ways. When novel
training views were acquired online and should be incorpo-



rated fast, the first two stages, which perform feature ex-
traction, are left unchanged — it is assumed that the so
far available features cover appearance of the new object at
least to some degree. Only the neural classifier is trained
anew, in case of a novel object, its output dimensionality is
increased. In a parallel thread, a full training of all three
processing stages — which is much slower — can be performed
offline.

4.4 Pointing gesture recognition

For pointing gesture recognition, a second instance of the
VPL operates on the candidate regions supplied from skin
color segmentation. Two tasks have to be solved: Mak-
ing a decision whether the skin colored region is a pointing
hand at all, and, if so, detection of the pointing direction.
So the VPL has two qualitatively different output channels:
a binary one indicates presence of a pointing hand, and a
continuous channel is the pointing angle (which is irrelevant
in case the first is “false”). The classifier is trained offline
from labelled sample images, an online training for pointing
gestures is planned but not yet implemented.

To obtain object reference, the symbolic output (angle) of
this module is transformed back to a subsymbolic represen-
tation as described below.

4.5 Attention module and object reference

On the signal level, relevant or “salient” image regions
may be indicated by a variety of features. Our approach
therefore exploits several complementary methods, the most
important of which are gray value entropy, local symmetry
and edge-corner detection. A local entropy map yields high
saliency value for image windows which have a high informa-
tional content in the sense of information theory [14]. A sym-
metry map attracts attention to objects or details which are
locally symmetric [20]. The use of symmetry is cognitively
motivated by eyetracking experiments [16]. The third fea-
ture map concentrates on edges and corners as small salient
details of objects. Here we use the standard detector pro-
posed in [11].

The output of each of these algorithms is a “saliency
map”, which assigns a saliency value to each pixel (Fig. 3).
The different maps are integrated by weighted summation
to obtain one final saliency map M. The highest maxima
of M are displayed in the original image by markers, which
indicate possible pointing targets (Fig 3). The selection of
a particular target is implemented as an overlay of M with
a “manipulator map”, i.e. a cone-shaped activation in the
direction of pointing, which highlights the nearest maximum
of M. A detailed description of the underlying saliency algo-
rithms, the integration to a single map M, and the selection
of pointing targets can be found in [12].

4.6 Menu control

Menu buttons are activated either by speech input, or
with the fingertip (Fig. 4). As this functionality is the fun-
damental user control mechanism, it has, apart from skin
color segmentation, its own specialized processing branch.
When a menu is being displayed, candidate skin color re-
gions which are within the region of menu buttons are evalu-
ated by template matching with prototypic fingertip shapes.
The matching module operates on multiple scales to facil-
itate recognition of the fingertip at various distances. To
avoid erroneous input, the fingertip must be found on the

same button and at the same scale for a minimum number
of frames before a button is selected. To trigger a “press”
event, a movement towards the center must be detected.

Simultaneous detection of a fingertip and a pointing hand
is possible, since the user might use both hands.

4.7 Speech processing

Speech input is processed by the ESMERALDA system,
which supplies an integrated environment for statistical model
estimation [9], which is applied here for speech recognition.
ESMERALDA employs an incremental recognizer, which
uses in turn vector quantization for feature extraction and,
subsequently, Hidden Markov Models to estimate the mix-
ture densities and n-gram language models. ESMERALDA
is able to recognize languages based on a context-free gram-
mar. It was evaluated using the VERBMOBIL appointment
scheduling domain. The achieved word error rate of 20.1%
was among the best results for this benchmark test [9]. Due
to its classification robustness, it was successfully applied in
object recognition systems [25] and in robotics [3].

5. EVALUATION

The evaluation of vision systems that operate in natural
environments is challenging and by itself a major topic of re-
search ([15]). The main problem is the difficulty in creating
an evaluation setup which is capable of exhaustively cover-
ing all degrees of freedom the system input is exposed to. To
cope with this problem, evaluation must be restricted (a) to
testing the most relevant components and (b) to a defined
set of “use cases”. This limited, but possibly prototypic ap-
plications should allow to judge the output of the integrated
system. In the following, we define a small set of such use
cases for fingertip and pointing reference recognition, which
are the most important subsystems for interaction.

5.1 Menu control

The experimental setup for fingertip recognition is the fol-
lowing: A “generic” menu is overlaid in the head mounted
display, buttons are labeled by numbers. A subject is then
asked by the supervisor to first select and then press a par-
ticular button number. The number of the button is chosen
randomly. We count how often the subject manages to press
the correct button using his or her finger within 5 seconds
time, i.e. how often the system recognizes a “pressed-event”
on the correct button first within the time limit. The exper-
iments were carried out in an office environment, so back-
ground is varying and cluttered.

The evaluation of the menu control consists of two parts.
First, the accuracy of the menu control is tested under vary-
ing parameters:

e To test the spatial resolution of the fingertip recogni-
tion, the number of buttons, is varied from 3 to 11.
The buttons are equidistantly arranged in the display.

e Four different illumination conditions were applied in
order to test robustness of the skin color segmentation:
Natural daylight, artificial light, source of light behind
the back of the person, and frontal lighting.

Results of the experiment are shown in Table 1. The test
persons could first get used to the system behavior over 20
items without performance evaluation. Success rates were
than counted over 160 items, illumination was changed every
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Figure 8: Above: Average hit rate of the second
menu control evaluation. Below: Average time the
subjects need to select and press a button of the sec-
ond menu control evaluation experiment. The upper
graph depicts the time including errors, whereas the
lower graph presents just the averaged time in case
of a correct selection.

Table 1: Hit rates for the menu control evaluation.

Number of buttons 3 5 7 9 11
Matches 98.6 | 97.3 | 90.6 | 74.6 | 57.3

40 items. Results were averaged over five subjects and the
different illumination conditions. Table 1 shows that menu
control is efficient and robust for up to seven buttons, for
nine buttons, control is still possible but requires more than
five seconds. In this case, sub-menus are more advisable.

Due to changing illumination conditions and background,
the accuracy of the menu control does not only depend on
the correctness of the fingertip recognizer but on the adap-
tion capabilities of the user. Therefore, to test how fast a
subject gets used to the system behavior, in a second exper-
iment the above described setup is used with fixed illumina-
tion conditions and with a fixed number of buttons (here 7).
Five subjects, completely unexperienced to the system, are
asked to select and then press buttons, as mentioned above.
One trial consists out of 15 items each. Fig. 8(above) shows
the fast increase of the number of hits whereas Fig. 8(below)
depicts the fast decrease of the average time the subject
needs to select and press the button. Already after the first
trial all subject reached a hit rate of about 80 percent. After
5 trials nearly all subjects achieved a hundred percent hit
rate.

Table 2: Results of the pointing gesture evaluation
in percent.

Distance 1.5 cm |3 cm |5 cm |10 cm |15 cm | 20 cm
Matches | 26.6 75 | 81.6 | 93.3 | 100 100

5.2 Pointing Gesture Recognition

The primary aim of the pointing gesture evaluation setup
we chose is testing the spatial resolution and efficiency of this
subsystem using a generic pointing task: A subject is asked
to point at a row of six white circles placed on a black paper-
board on the desk. The diameter of each circle is 12 mm,
distances between the circles vary from 3 to 20 cm (mea-
sured from the center of the circles). To test performance
for pointing to details, in an additional experiment circles
of diameter 6 mm with a distance of 1.5 cm were used. The
distance between the hand and the board is approximately
40 cm, so angular resolutions from 2° to 28° could be tested
for targets of about 0.9° or 1.7° angular range, respectively.
A supervisor gives the command to point at one of the cir-
cles by telling a randomly chosen circle number. Only the
inner four circles were used to avoid border effects. A match
is counted if the system recognizes a reference to the correct
circle within three seconds time. As the subject is able to see
the visual feedback during the test, i.e. which spot is cur-
rently referenced, in the head mounted display, he or she is
able to adapt his or her movements to the system behavior.

Results of the experiment are shown in Tab. 2. The val-
ues are averaged for five subjects with 15 items each. The
match percentage is quite high even for small target dis-
tances. Only at point distances of 1.5 cm, the values de-
crease substantially. This effect is probably caused by the
accuracy of the detected skin color patch of the finger. Due
to slightly changing illumination conditions, the center of
the skin color blob and the direction of the skin color patch
leads to jumping points of attention. The major result
achieved in this test scenario is that the user is enabled to
adjust single pointing gestures to a target and that the user
can adapt himself or herself to the system behavior. This
way the achievable effective resolution is improved by rep-
etitions of the test runs, because it does not solely rely on
the accuracy of the pointing gesture recognition any more.

6. DISCUSSION AND OUTLOOK

We have presented a human-machine interface using hand
gesture and speech in the context of an augmented reality
scenario. So far, generic functionalities were implemented:
For interaction with the system, menu based control, object
reference, and object learning were described. An additional
functionality is the adaptation of the interface itself by skin
color training. The latter demonstrates the need of mul-
timodality particularly well: In case vision does not work
well, speech can not only take over control but also trigger
re-adaptation of vision.

In future work, the system will be equipped with an ac-
tive memory which can give feedback on the “standard of
knowledge” of the system. So the system will be enabled to
ask the user for additional object views, to compare simi-
lar objects and carry out retrieval tasks. Interaction will be
enhanced by an adaptation mode for speech, where speech
parameters like amplification can be controlled, and indi-



vidual speech samples of the user be recorded. To improve
gesture recognition, online training of user-specific pointing
poses will be implemented similar to the online acquisition
of object samples.

7. ADDITIONAL AUTHORS

Additional authors: Christian Bauckhage (Applied Com-
puter Science Group, email: chauckha@techfak.uni-bielefeld.de),
Sven Wachsmuth (Applied Computer Science Group, email:
swachsmu@techfak.uni-bielefeld.de), Gernot Fink (Applied
Computer Science Group, email: gernot@techfak.uni-bielefeld. de),
Axel Pinz (Institute of Electrical Measurement and Mea-
surement Signal Processing, Graz University of Technology,
email: azel. pinz@tugraz.at), Helge Ritter (Neuroinformatics
Group, email:helge@techfak.uni-bielefeld.de) and Gerhard
Sagerer(Applied Computer Science Group, email:
sagerer@techfak.uni-bielefeld.de) .
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