
Universität Bielefeld

Technische Fakultät
AG Neuroinformatik
Robert Haschke

Übungen zu “Autonomous Grasping”

WS 2017/18 Blatt 9
Abgabe: 6.9.2019

The following tasks will use Neo/NST. While neo is available from the rcinfo package nst, we need to access the 32bit version
here. For this reason, please use the shell script in /vol/ni/share/lehre/robotik/grasping/neo/neo.sh.

In preparation of this assignment, copy the whole folder /vol/ni/share/lehre/robotik/grasping/neo to your home direc-
tory and work therein. Neo/NST loads additional units listed in the file .neofolders that should be accessible in the current
directory.

cp -r /vol/ni/share/lehre/robotik/grasping/neo ˜/grasping
cd /grapsing

Neo/NST is a graphical programming environment. Please familiarize with Neo/NST by loading and playing around with an
initial circuit:

./neo.sh -i arm.NST

The unit gui loop is executed as soon as the mouse pointer is within the NST:gui window. This unit in turn executes its
operands marked by the red rubber frame, i.e.

• calling the CBF controller (cbf)

• fetching the current joints (cbf:res)

• actuating the simulated model (prog)

• render the model (vx:Render:Update)

The cbf controller loads its controller from an XML file. When clicking the little ’m’ you can modify the unit settings, namely
choose the XML file, reference which simulation scene (vx:scene), and which kinematic tree to use. The following kinematic
trees are available:

• [Right—Left].arm: up to the ToolFrame

• [Right—Left].arm-with-hand: including the hand (as a kinematic tree)

• arms: both arms up to the ToolFrame (as a kinematic tree)

• arms-with-hands: both arms with hands attached

Aufgabe 9.1, Change Endeffector: Starting from circuit arm.NST, switch from finger tip control to arm control only. To this
end:

• In file xml/arm.xml, in the SensorTransform element, change the SegmentName to Right.ToolFrame (instead of
Right.hand.ff1) and save as new file.

• In the circuit, change to the new XML file, modifying the unit cbf.

Try other segments of the robot as well, e.g. the elbow (Right.arm.sSeg5) or other finger tips (Right.hand.mf1, Right.hand.th1).
You can retrieve the segment names by pointing to them in the visualization window and pressing “i”. Then, the name is printed
on the console. What do you observe, when controlling different end effectors, going upward the kinematic chain?

Aufgabe 9.2, Redundancy Control: Replace the current redundancy controller (SubordinateController) by one, which
controls the shoulder position (Right.arm.sSeg3). Check the syntax of your xml with:

xmllint –schema /homes/rhaschke/src/cbf/schemas/schemas.xsd ¡your xml file¿

In the neo circuit, connect the second input of init:set target to a new use method unit referencing your new sub controller
(something like cbf:NS:<name>:set, lookup the name beforehand). Hint: you can dive into a container unit by clicking the
’o’. You escape from a container by right-clicking on the background.

Aufgabe 9.3, Parallel Control: Instead of using a SubordinateController, you could also run both controllers with same
priority level, side by side. To this end, use CompositeReference, CompositePotential, and CompositeSensorTransform

elements. They always expect elements of like type as children. Remember to adapt the TaskDimension of the EffectorTransform.
Which difference in behaviour you observe?

https://projects.cit-ec.uni-bielefeld.de/projects/nst
https://ni.www.techfak.uni-bielefeld.de/node/3014

