Exercises for "Autonomous Grasping"
 WS 2017/18 Sheet 0
 Due on: 13.10.2017

Task 0.1, Rotation matrix: Compute the matrix R for the resulting rotation from

1. first rotating about z-axis and then about y-axis, both with angles of 90°
2. first rotating about y-axis and then about z-axis, both with angles of 90°

Compare the results!

Task 0.2, Rotation matrix: Determine the rotation matrix R_{1}^{0} that transform coordinates from frame 1 into coordinates of frame 0 . The x_{1}, y_{1} axes lie within the $y_{0}-z_{0}$-plane, the z_{1}-axis is opposite to the x_{0}-axis.

Task 0.4, Inverse Rigid-Body Transform: Verify the formula for the inverse rigid body transform given in the lecture:

$$
\left(\begin{array}{cc}
R & \vec{t} \\
\overrightarrow{0}^{t} & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
R^{t} & -R^{t} \vec{t} \\
\overrightarrow{0}^{t} & 1
\end{array}\right)=\left(\begin{array}{cc}
R^{t} & \overrightarrow{0} \\
\overrightarrow{0}^{t} & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathbf{1} & -\vec{t} \\
\overrightarrow{0}^{t} & 1
\end{array}\right)
$$

