Universität Bielefeld

Exercises for "Autonomous Grasping" WS 2017/18 Sheet 0

Due on: 13.10.2017

Task 0.1, Rotation matrix: Compute the matrix R for the resulting rotation from

1. first rotating about z-axis and then about y-axis, both with angles of 90°

2. first rotating about y-axis and then about z-axis, both with angles of 90°

Compare the results!

Task 0.2, Rotation matrix: Determine the rotation matrix R_1^0 that transform coordinates from frame 1 into coordinates of frame 0. The x_1 , y_1 axes lie within the y_0 - z_0 -plane, the z_1 -axis is opposite to the x_0 -axis.

Task 0.3, Transforms: Determine formulas for the following relative transforms given the shown transformation tree. Note the different directions of arrows, which define the direction of the available relative transform.

- Compute pose of tool in world
- Compute pose of object in world
- Compute grasp pose in world
- Compute motion to reach grasp pose

Task 0.4, Inverse Rigid-Body Transform: Verify the formula for the inverse rigid body transform given in the lecture:

$$\begin{pmatrix} R & \vec{t} \\ \vec{0}^t & 1 \end{pmatrix}^{-1} = \begin{pmatrix} R^t & -R^t \vec{t} \\ \vec{0}^t & 1 \end{pmatrix} = \begin{pmatrix} R^t & \vec{0} \\ \vec{0}^t & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{1} & -\vec{t} \\ \vec{0}^t & 1 \end{pmatrix}$$

