
Analyzing the weight dynamics of recurrent

learning algorithms

Ulf D. Schiller and Jochen J. Steil

Neuroinformatics Group, Faculty of Technology, Bielefeld University

Abstract

We provide insights into the organization and dynamics of recurrent online train-
ing algorithms by comparing real time recurrent learning (RTRL) with a new
continuous-time online algorithm. The latter is derived in the spirit of a recent
approach introduced by Atiya and Parlos [1], which leads to non-gradient search di-
rections. We refer to this approach as Atiya-Parlos learning (APRL) and interpret
it with respect to its strategy to minimize the standard quadratic error. Simulations
show that the different approaches of RTRL and APRL lead to qualitatively differ-
ent weight dynamics. A formal analysis of the one-output behavior of APRL further
reveals that the weight dynamics favor a functional partition of the network into
a fast output layer and a slower dynamical reservoir, whose rates of weight change
are closely coupled.

Key words: recurrent network, recurrent learning, weight dynamics, gradient
descent

1 Introduction

Recurrent neural networks (RNNs) are attractive tools for tasks of sequential
nature like time-series prediction, sequence generation, speech recognition, or
adaptive control. Many architectures ranging from fully connected to partially
or locally RNNs have been developed. Although their application is successful
in practice, the dynamical behavior of the networks leads to high complexity
of the algorithms. The credit assignment problem and the potentially rich dy-
namical properties of the networks make it difficult to devise efficient recurrent

Email addresses: uschille@techfak.uni-bielefeld.de (Ulf D. Schiller),
jsteil@techfak.uni-bielefeld.de (Jochen J. Steil).

URLs: www.ulfschiller.de (Ulf D. Schiller), www.jsteil.de (Jochen J. Steil).

Preprint submitted to Elsevier Science 19 May 2004

learning schemes. Contemporary approaches frequently employ regularization
techniques to tackle these problems [2]. The analysis of dynamical properties
of recurrent networks and the corresponding learning algorithms nevertheless
remains a challenging field of research.

Some encouraging results are available with respect to formulate a common
unifying framework for gradient based techniques like real time recurrent learn-
ing (RTRL) or backpropagation through time (BPTT). Atiya and Parlos [1]
have shown that these can be derived from a constrained optimization prob-
lem which combines the quadratic error with constraints reflecting the network
dynamics. They also introduced a new strategy to minimize the standard er-
ror which employs search directions different from the gradient. It considers
the states as control variables and computes weight updates to achieve a tar-
geted change in the states variables. We reference to this strategy as Atiya-
Parlos learning (APRL). In [1], an O(n2)-efficient APRL algorithm was given
for discrete networks, while we will introduce below an APRL algorithm for
continuous-time networks. We also show that APRL can be interpreted as a
truncated ”one-step-backward” propagation of the instantaneous error com-
bined with a momentum term providing the necessary dynamic memory.

The existence of such different approaches as RTRL and APRL to minimize
the standard quadratic error function along different search directions moti-
vates further investigations on whether and how the resulting weight dynamics
differ. This is especially interesting for online trajectory learning, because in
this case the input data are highly correlated. In this case the gradient di-
rection becomes a well founded heuristics because it does not implement a
stochastic gradient descent any more and rather the combined dynamic of er-
ror function and weights determine the learning success. The obvious problem
is that direct access to the dynamics of online learning on the high dimensional
error surface is not possible for two main reasons: because of the multiple con-
straints acting through the network dynamics and the complex dependency of
the time-varying error surface on the network parameters.

Therefore, we use a comparative approach to investigate the Atiya-Parlos
methodology and its weight dynamics as opposed to results for RTRL [3]
on two typical tasks. Simulations and theoretical results show that the two
algorithms behave quite different and yield evidence that their different ways
to minimize the error lead to unrelated weight dynamics. This point of view
is further supported by a formal treatment of the one-output case of APRL
which reveals a functional division of the network which resembles more the
”echo state network” [4,5] and ”liquid state machine” approaches [6,7] than
classical backpropagation.

The remainder of this work is organized as follows: In section 2 we give a
continuous-time online algorithm based on the APRL paradigm [8] and inter-

2

pret the algorithm with respect to its strategy to minimize the error function.
In section 3 we present simulation results from APRL and RTRL and analyze
the weight dynamics of the algorithms. In section 4 we turn to the one-output
case and prove that APRL leads to a very special weight dynamics that results
in a functional partition of the network. In section 5 we summarize the results
and discuss the insights gained hereby.

2 Atiya-Parlos Recurrent Learning (APRL)

For further reference, we give a continuous-time algorithm which is derived
with the APRL learning approach in a straightforward way and similar to the
treatment in [1] for discrete networks 1 . We consider the dynamics

dx̃

dt
= −x̃ + Wf(x̃) (1)

where W = (wij) is the weight matrix and a sigmoid f(·) is applied component-
wise to its argument x̃ (or x, xT later). Equation (1) is discretized as

x(k + 1) = (1 − ∆t)x(k) + ∆tWf(x(k)), (2)

where x(k) = x̃(k∆t) to skip the dependence of the time variable on ∆t. Let
O be the set of output neurons, then recurrent learning aims at minimizing
the quadratic error

E =
1

2

K
∑

k=1

∑

i∈O

[xi(k) − di(k)]2 . (3)

The standard approach to solve this problem is gradient descent in weight
space, which means to adapt the weights by a small step −η∇wE in the
direction of the negative gradient of the error function. However, with APRL
we compute a different search direction below.

From a formal point of view the training problem can be formulated as a
constrained optimization problem, where the discretized dynamics (2) yields
for each k = 0, . . . , K−1 the constraint equation

g(k + 1) ≡ −x(k + 1) + (1 − ∆t)x(k) + ∆tWf(x(k)) = 0. (4)

1 In [1], it has been proposed (but not carried out) to derive a continuous version
of APRL based on outputs y = f(x) and E =

∑K
k=1 [yi(k) − di(k)]2. This leads to

slightly different formulas and is not always suitable, e.g. for identification tasks,
where the amplitude of di may not fully be known in advance. The basic framework,
however, remains identical.

3

The goal is to minimize E subject to g(k + 1) = 0, k = 0, . . . , K − 1. In the
following, we collect the relevant quantities in vectors to write

x ≡ (xT (1), . . . , xT (K))T ,

g ≡ (gT (1), . . . , gT (K))T ,

w ≡ (wT
1 , . . . , wT

N)T ,

(5)

where wT
i are the rows of W.

For gradient descent in weight space, the weights are considered the control
variables. The key idea of the APRL approach is to interchange the role of
the weights w and the states x. Then the states are considered as the control
variables and a small step η∆xtar in the direction of the negative gradient of
the error with respect to the states is targeted:

∆xtar = −

(

∂E

∂x

)T

= −
(

eT (1), . . . , eT (K)
)T

, ei(k) =

xi(k) − di(k), i ∈ O

0, i 6∈ O.

Because the constraint equation (4) equals zero, we have

∂g

∂w
∆w +

∂g

∂x
∆x = 0 ⇒

∂g

∂w
∆w = −

∂g

∂x
∆x. (6)

and can try to compute weight changes ∆w which (approximately) lead to
the targeted step ∆x. We call this strategy of APRL virtual teacher forcing,
as the desired target states are used to compute the weight changes but never
are really fed into the network like in traditional teacher forcing approaches.

A least squares solution of (6) using the pseudo-inverse of ∂g/∂w leads to the
Atiya-Parlos learning rule for a step ∆x = η∆xtar:

∆wbatch = −η

(

∂g

∂w

)T (

∂g

∂w

)

−1 (
∂g

∂w

)T
∂g

∂x
∆xtar = −η

(

∂g

∂w

)#
∂g

∂x
∆xtar.

(7)
As pointed out in [1], the batch update defines an overdetermined system and
the resulting accumulated weight changes ∆wbatch therefore minimize the sum
of square error of the residual of the target errors.

The learning rule (7) can be reformulated in the matrix notation of the weights
W. In this representation, it yields the batch update ∆Wbatch = ∆W(K) after
presenting all data points (x(k), d(k)), k = 1, . . . , K. More details are given
in Appendix A.

4

2.1 Online algorithm

To turn (7) into an online algorithm, ∆W(K) can be split into the part for
the first K−1 data points and the online update ∆Wonline(K):

∆Wbatch(K) = ∆Wbatch(K − 1) + ∆Wonline(K) =
K
∑

k=1

∆Wonline(k). (8)

As shown in Appendix A the matrix ∆Wonline(k) can be further split into

∆Wonline(k) = ∆Winst(k) − ∆Wbatch(k−1)
[

I−V(k−1)V−1(k)
]

, (9)

where V(k) =
∑k

s=1 f(x(s))f(xT (s)) + εI, (ε > 0 for regularization, I is the
identity matrix). The first term ∆Winst(k) is the matrix corresponding to the
one-step solution ∆winst(k) of (7) for the instantaneous error

∆winst(k) = −η

(

∂g

∂w

)#
∂g

∂x
∆x(k), (10)

where ∆x(k) = (0, . . . , 0, e(k)T , 0, . . . , 0)T and e(k′) = 0 for k′ 6= k. The second
is a momentum term which includes the accumulated updates up to step k

and decays due to V(k−1)V−1(k)
k→∞
−→ I.

2.2 Interpretation of the online algorithm

In (9), the online update rule is composed of an instantaneous weight update
and a momentum term. The first is the solution of (7) for the single step
error ∆x(k), which in this case is an underdetermined system. The procedure
is illustrated schematically in Figure 1, where we regard the error surface at
time k dependent of the states as well as on the weights, i.e. consider an error P
in (x,w, E(x,w))-space. The virtual teacher forcing states ∆x are computed
with respect to the projection of E on the (E,x)-plane, then this gradient
defines a back projection to the (E,w)-plane, where among multiple solutions
for ∆w which are consistent with the constraints the one with minimal norm
is chosen. The weight update ∆w may lead to downhill or uphill steps on the
original error surface, especially as the number of degrees of freedom for the
solution of (7), is in principle 2 n2 with respect to less than n targeted ∆x(k)
per time step (often even only one target output is available). The minimum
norm solution picked by the pseudo-inverse is not directly sensitive to the error
and may not be the best choice and/or the dynamic constraints can enforce
quite large steps in the weight space.

2 In Section 4 we will show that de facto it is only 2n in the one-output case.

5

3

4

5

3

2

g(w,x)

1

w∆

E

x

Pw

P
P∆

w

Px
∆ x(k)

Fig. 1. At time k APRL online learning (9) proceeds starting at a point P on the
error surface E(x,w). The E is projected to the (E, x)-plane (1), where gradient de-
cent computes the targeted ∆x(k) (2). These targets define a back projection to the
(E,w)-plane (3), where a solution for ∆w is picked which is consistent with the con-
straints (the recurrent dynamics) and has minimal norm (because the pseudo-inverse
is used) (4). Finally, ∆w leads to a step ∆P (5). The decaying momentum term
modulates this step (not shown).

The momentum term in (9) contributes relative to V(k−1)V−1(k)
k→∞
−→ I and

decays in the long run. This results in a potential high sensitivity to initial
transients, which we indeed observe in the simulations below. The momentum
decay also shows that APRL, though not following the gradient, suffers from
fading memory like gradient algorithms from the vanishing gradient (cf. [9]).

3 Simulation results: APRL vs. RTRL

From the previous discussion we expect that simulations may show substantial
performance differences between APRL and RTRL, in particular for online
learning. Below we consider two tasks to illustrate such differences: the popular
Rössler attractor [10], which is mildly chaotic, has a strange attractor limit
set, and has been shown to be learnable by relatively small recurrent networks,
and secondly the well known Mackey-Glass system.

For the Rössler system we learn the operator which maps coordinate functions
of the Rössler dynamics onto each other as described in more detail in [11], a

6

steps

min training

error

training error

after 100 epochs

epoch with

min error

generaliz.

at min

generaliz. after

100 epochs

avg std avg std avg std avg std avg std

Rössler, 10 neurons, time step 0.1

1000 0.0650 0.0018 0.0659 0.0018 89.30 11.64 0.0183 0.0029 0.0183 0.0037

RTRL 1019 0.0234 0.0055 0.0278 0.0030 22.50 28.55 0.0099 0.0086 0.0216 0.0068

η = 0.05 1020 0.0292 0.0014 0.0311 0.0009 42.50 41.60 0.0095 0.0052 0.0201 0.0061

1250 0.0032 0.0013 0.0035 0.0013 74.60 22.28 0.0017 0.0009 0.0018 0.0009

1430 0.0186 0.0004 0.0189 0.0005 72.20 29.99 0.0088 0.0020 0.0109 0.0031

1000 0.0536 0.0243 0.7873 0.2365 19.30 10.45 0.1234 0.3224 0.9184 0.2679

APRL 1019 0.0094 0.0160 0.0887 0.2534 81.80 31.21 0.0098 0.0232 0.1154 0.3394

η = 1 1020 0.0429 0.0380 0.6425 0.3192 27.20 24.36 0.2048 0.4339 0.8682 0.4401

1250 0.0016 0.0002 0.0016 0.0002 77.50 34.21 0.0003 0.0003 0.0003 0.0003

1430 0.0463 0.0453 0.6498 0.3207 26.00 30.58 0.0630 0.0936 0.8604 0.4272

Mackey-Glass, 40 neurons, time step 0.2

RTRL 200 0.1730 0.0001 0.1730 0.0001 50.00 0.00 0.1410 0.0001 0.1410 0.0001

η = 0.05 500 0.1417 0.0003 0.1429 0.0001 13.50 2.80 0.2054 0.0048 0.1848 0.0003

APRL 200 0.0592 0.0103 0.0592 0.0103 50.00 0.00 0.1732 0.0445 0.1732 0.0445

η = 1 500 0.0979 0.0072 0.0979 0.0072 50.00 0.00 0.1550 0.0118 0.1550 0.0118

Table 1
Simulation results. Different numbers of learning steps per epoch (column 1) cause
displacements of the trajectory between consecutive epochs and thus different tran-
sients. All data are averaged over ten runs of 100 epochs, errors are given as NMSE.

task of medium difficulty. The coupled differential equations are

ẋ = −y − z, ẏ = x + 0.2y, ż = 0.2 + xz − 5.7z. (11)

We obtain the coordinate functions by a fourth order Runge-Kutta integra-
tion with initial conditions (0.495,−0.166,−0.3) and use – a relatively small
number – of ten steps to integrate from t → t + 1. The coordinates x and z
are used as inputs for the network, and y is the target output, all scaled by a
factor 1

10
into a suitable range for the network. Note that the initial conditions

are outside the attracting set such that the initial transients play a significant
role, see Fig. 2.

The Mackey-Glass equation with parameters for a mildly chaotic system

ẏ(t) = −0.1y(t) +
0.2y(t − 17)

1 + y(t − 17)10
(12)

is integrated from k → k+1 using 30 Runge-Kutta 4-th order steps. Network
inputs are y(k), y(k − 6), y(k − 12), y(k − 18) while the target is y(k + 84).

In all cases the networks are trained in epochs on different numbers of K steps
(=data points) by applying at each step the online update for RTRL (see [3])
or APRL from (9), respectively. Then training is restarted at the first step
while the trained network is kept such that in training epochs the networks
needs transients to recover to the restarted trajectory. For generalization, the
initial state is the last point of the previous training epoch, which after training
is close to the desired trajectory such that no transients are present and hence

7

−4 −2 0 2 4

−4

−2

0

2

4
1000 Steps/Epoch

−4 4

4

2

0

−2

−4

−2 0 2

1019 Steps/Epoch

−4

−4

−2

420−2

4

2

0

1020 Steps/Epoch

42−2 0−4

−4

−2

0

2

4
1250 Steps/Epoch

−4 −2 0 2 4

−4

−2

0

2

4
1430 Steps/Epoch

Fig. 2. Transient behavior at the beginning of a training epoch for the Rössler
attractor (projected to the xy-space). While the x (and z)-coordinate is given as
input, the y-coordinate is output of the network. The darker line is the target
trajectory, the brighter line is the network prediction.

generalization errors are sometimes smaller than training errors.

The time steps and number of neurons are given in Table 1, the learning rates
are η = 0.05 for RTRL and η = 1 for APRL. The APRL regularization pa-
rameter is ε = 1 for the Rössler dynamics and ε = 0.002 for the Mackey-Glass
system. Initial weights are generated randomly and uniformly distributed in
[−0.2, 0.2]. Errors are given as NMSE = 〈(x(k) − d(k))2〉 /σ2, where σ2 is the
standard deviation of the reference signal d(k) and x(k) is the network output.

For RTRL in the majority of all cases the training error gradually improves
as training proceeds though overfitting occurs in some cases. The differences
for the varying number of learning steps per epoch show that initial transients
influence the errors, but mainly appear as a bias while the overall learning
performance is not perturbed. RTRL turns out to be robust and yields good
training and generalization errors.

The results in Table 1 show that APRL achieves training errors comparable
to RTRL, but the minima are reached faster. Single trials reach the minimal
training errors often after less than 15 epochs. This confirms the results of
Atiya and Parlos [1] and shows that APRL with high learning rates is an effi-
cient alternative to RTRL and leads to good training errors and generalization,
respectively.

Influence of transients and overshoot

The results for APRL on the Rössler system show the influence of the ini-
tial transients. Because we start a new training epoch at the end of the last
epoch, the starting points result in quite different transients even for the small
displacement between 1019 and 1020 steps as shown in Fig. 2. Especially in-
teresting is also the average epoch in which the minimal error is reached for
1019 and 1020 in Table 1. While for 1019 steps typically the error gradually
decreases and the best performance is achieved after many epochs (avg ≈ 82),
for 1020 steps the minimum is reached earlier and in later epochs an error over-

8

0.1

0.01

0.001

1

20 40 60 80 100

NMSE

Run

1020 Steps/Epoch

1019 Steps/Epoch
0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

η =0.01

η =0.1η =1

η =0.001

NMSE

1000 Steps/Epoch

Epoch
1

Fig. 3. Left: Final errors for 100 runs of 100 epochs for training 1019 or 1020 points
of the Rössler system. Right: Error curves for APRL with reduced learning rates.
The respective learning rates are indicated at the curves.

shoot occurs, which often finally drives the network out of the working region.
After 1019 steps, the first error signal in the new epoch in most cases induces
a ∆x(1) in the correct positive y-direction and the transient is fairly short,
after 1020 steps, the first error signal ∆x(1) points in the negative y-direction
and the transients are more erratic. Though in both cases the network comes
back to the correct trajectory and small errors, the influence of the transient
persists and causes the significant difference in the long term performance. In
Fig. 3 the final errors for full 100 runs of 100 epochs are shown in both cases.

In order to investigate whether error overshoot is due to large learning rates,
we reduced the rate to η = 0.1, η = 0.01 and η = 0.001 (1/1000 of the
standard rate for APRL) from the beginning of the training (here for 1000
steps). Results are shown in Fig. 3. An improvement of the overall training
error is not observed, however, the minimum is reached later, for η = 0.001
after 3829 epochs.

The sensitivity to transients of APRL is plausible from the characteristic mo-
mentum term in (9). Therefore we conclude that the error overshoot is a
characteristic feature of APRL which is caused by the transients and there-
fore problem specific. We did not observe such problems for the Mackey-Glass
system, where APRL yields excellent results and performed very stably. Our
experience with error overshoot is in line with [1], where it was already noticed
that after the training minimum the error increases again and learning has to
be stopped at the minimum.

9

APRL
RTRL

NMSE

Epoch

1000 Steps/Epoch

0 10 20 30 40 50 60 70

0.8

0.6

0.4

0.2

1

RTRL
APRL

NMSE

Epoch

1020 Steps/Epoch

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 700

Fig. 4. Error curves for switching the algorithms while learning the Rössler attractor.
Left: RTRL applied after APRL. Right: APRL applied after RTRL.

3.1 Switching between algorithms

Our simulations and the results in [1] show that APRL not only has a lower
computational complexity than RTRL but also reaches the minimum of the
training error fast. RTRL in turn is less sensitive to transients and achieves
better generalization errors. To combine the speed of APRL with the robust-
ness of RTRL, we tried to use the weight matrices with the minimal training
error obtained with APRL as initial weight matrices for further training with
the RTRL algorithm. To generate some learning memory and to initialize the
sensitivity values ∂xl/∂wij, which are needed to apply RTRL, we first run the
network 200 steps without actually applying updates.

Surprisingly, we observe a jump of the error in all cases, as well for the Rössler
task (cf. Fig. 4 left) as for the – otherwise very well behaved – Mackey-Glass
system, even for very small learning rates of RTRL. We also observed cases
where RTRL diverges after training initialized with the APRL-optimized con-
figuration. Fig. 5 shows one of the runs, where RTRL achieves to come back to
the desired Mackey-Glass trajectory, however, the performance is much worse
than starting with a usual initialization. Fig. 5 gives an explanation of this fact
in terms of the maximum norm of the weight matrices ‖W‖m = maxij |w|ij.
While RTRL keeps the weights small, APRL optimized weight matrices have
large entries, which despite their actual good performance are a bad initializa-
tion for RTRL and can be pushed out of the working region by a few number
of learning steps, which are caused by the small but always existing residual
errors.

These results show that switching from APRL to RTRL is not well behaved
and cannot easily be used to exploit the properties of both algorithms. We
also carried out switching in the other direction from RTRL to APRL and the
results show that the above observations apply vice versa (cf. Fig. 4 right).

10

1

0 100 200 300 400 500

0.25

0.5

0.75

1.25

1.5

network
MG

0 20 40 60 80

1

2

3

4

5

100

max |wij|

Epoch

RTRL

APRL

Fig. 5. Left: A trajectory for switching between algorithms while learning the
Mackey-Glass system. After 200 iterations of the network initialized with an
APRL-optimized weight matrix, RTRL starts and generates large errors quickly.
Right: Matrix maximum norms for typical runs of 100 epochs of training 1019 steps
of the Rössler attractor. The plot shows diverging (dash-dotted curve) and stable
(solid curve) APRL runs, and an RTRL run (dotted curve).

That is, the minima obtained by RTRL are not minima of APRL, at least
for the online algorithms. We believe that this sheds some light on the often
ignored role played by the interaction between the time-variance of error sur-
face, which is caused by the online learning algorithm, and the errors, which
are derived from that very surface and drive the learning algorithm. Our re-
sults suggest that this interaction drives the weight dynamics of APRL and
RTRL to follow qualitatively different paths, such that it is difficult to exploit
both the speed of APRL and the robustness of RTRL.

4 The one-output behavior of APRL

In the following, we consider the case of only one output neuron, say x1 (note
that all simulations presented use only one output). It turns out that the
weight updates in the non-output part of the weight matrix scale equally and
with constant rate in every column. The scaling factors are proportional to
the weights in the first column. Formally, this is stated as

Proposition 1.

∀k ∀i > 1 ∀j > 1 ∀h : ∆wih(k) =
wi1(0)

wj1(0)
∆wjh(k). (13)

The proof for (13) is given in appendix B.

The above result shows that there are two different groups of weights: those
who connect arbitrary neurons to the output neuron and which may arbitrarily

11

Output
Neuron

1x

Reservoir

Input

Feedback

Weights
Output

Fig. 6. Functional structure for one-output APRL: The network is partitioned into
a dynamical reservoir, whose weights change slowly and are coupled, and an output
layer that learns fast and uncoupled.

change and the majority of weights interconnecting the inner neurons, whose
rates of change are systematically coupled and determined beforehand by the
initialization. The result holds for the case of a single output neuron and does
not easily generalize to more than one output.

To clarify this result further, let sij = wi1(0)
wj1(0)

denote the constant scaling factors.

Then the update ∆W of the weight matrix reads

∆W =

∆w11 ∆w12 · · · ∆w1n

∆w21 ∆w22 · · · ∆w2n

s32∆w21 s32∆w22 · · · s32∆w2n

...
...

. . .
...

sn2∆w21 sn2∆w22 · · · sn2∆w2n

. (14)

From equation (14), we obtain a functional division of the network structure.
The inner weights form a reservoir whose dynamical behavior is used by a
readout layer made up of the output weights. After T update steps we obtain

wij(T) = wij(0) + ∆wij(T) = wij(0) +
wi1(0)

w21(0)

T
∑

k=1

∆w2j(k), j > 2. (15)

The functional division of the network structure is depicted in Figure 6. The
partitioning into modules resembles seemingly very different approaches in-
dependently developed by Jäger [4,5] under the notion ”echo state network”

12

and Natschläger et al. [6,7] as ”liquid state machine”. These approaches fol-
low the idea to use a recurrent network as a dynamic reservoir that provides
sufficient dynamics to store information about the time development of the
inputs. The desired output function can then be learned efficiently by a lin-
ear readout layer. It can be shown that under special assumptions the echo
state approach leads to a learning rule similar to the Atiya-Parlos learning
rule [12]. However, in the general case there are two main differences: while
the structure of echo state networks is an a-priori assumption and neurons
are only locally connected, the functional division of APRL is a consequence
of the error propagation based on the standard error function. Further, echo
state networks do not have a feedback from the output layer and no online
scaling of the reservoir takes place. Therefore the APRL one output case can
be regarded a sort of intermediate model between the fully variable networks
trained with RTRL and the specially structured echo state network.

4.1 Simulation results: Weight change

To illustrate the impact of the partitioning of the network into different func-
tional groups of weights, we analyze the rates of change of the weights in the
output layer and in the reservoir. We compute the average absolute change

∆wij =
1

L

L
∑

k=1

|∆wij(k)| (16)

of each weight, where L is the number of steps per epoch. Then the mean is
taken for the complete weight matrix, for the output weights and for the inner
weights, respectively, to match the functional modules.

〈∆W 〉all weights =
1

n2

∑

i

∑

j

∆wij, (17)

〈∆W 〉output =
1

n

∑

j

∆w1j , (18)

〈∆W 〉reservoir =
1

n2 − n

∑

i6=1

∑

j

∆wij. (19)

Figure 7 shows plots of these values for a trial for the Rössler system with 1250
learning steps per epoch for RTRL and APRL, where APRL behaves very
regular and stable. As expected for APRL, the output weights change much
more rapidly than the weights connecting the inner neurons. This behavior is
also present for RTRL, yet much less pronounced. For the latter, the differences
in the rates of change are a consequence of the vanishing gradient [9].

13

Epoch

Weight Change

reservoir

all weights

output layer

1250 Steps/Epoch

0 20 40 60 80 100

1e−05

0.0001

0.001

all weights

Weight Change

Epoch
1250 Steps/Epoch

reservoir

output layer

0 20 40 60 80 100

1e−05

0.0001

0.001

Fig. 7. Weight change of APRL (left) and RTRL (left). The curves depict the weight
change of the output layer (dashed), the reservoir (dotted) and of all weights (solid).
The difference between the reservoir and the output layer is explicit for APRL.

5 Summary and discussion

Our investigations on the weight dynamics of the continuous-time online-
learning algorithm derived with the recent APRL approach [1,8,12] in com-
parison with RTRL show that the different strategies to minimize the error
function lead to significantly different weight and error surface dynamics. The
simulations confirm results from [1] which have also been obtained for dif-
ferent tasks and indicate that APRL can be used with higher learning rates
such that the minimal training error is reached very quickly. Comparison with
RTRL reveals that APRL is more sensitive to transients and has in some cases
a characteristic overshoot of the error after reaching the minimum. This over-
shoot seems due to the initial transients and can not be avoided by decreasing
the learning rate. This view is supported by long run simulations and a formal
analysis, which shows that online APRL uses a momentum term, which is
largest in the first learning steps and then gradually decays.

There are two striking results supporting the conjecture of unrelated weight
dynamics of RTRL and APRL. The first is the lack of success in switching
between the algorithms, which indicates that an optimal weight configuration
for one of them is not useful for the other. Inspection of the corresponding
weight matrices and computing norms show that APRL optimal configura-
tions typically have much larger weights than RTRL matrices and therefore
are unsuitable initial conditions for further RTRL training. The second inter-
esting fact is provided by the analysis of the one-output case of APRL. In
this case the relative rates of change in the non-output part of the weight
matrix remain constant for every column. The result is a highly structured
network which is partitioned into a fast output layer and a slower reservoir,
whose inner degrees of freedom to adapt to the task are drastically reduced
in comparison with RTRL. It seems that nevertheless at least in the case of

14

randomly initialized weight matrices there are always enough good working
points for the reservoir to allow the fast changing output layer to implement a
suitable readout function. However, the smaller number of degrees of freedom
seems to require larger weights and consequently in some cases the algorithm
does not seem to be able to fully control the process of scaling the reservoir
such that at later stages the performance decreases and the typical overshoot
can be observed.

The subset of all possible weight configurations accessible by APRL is de-
termined beforehand by the initialization and consequently the network per-
formance is sensitive to this initialization. We performed control experiments
where the variability of the scaling factors was restricted systematically (only
positive weights, particularly scaled weights, or large weights). In all such
cases, where the degrees of freedom are additionally reduced by the initializa-
tion, the learning performance significantly decreases.

Further investigations should be made how far a similar behavior occurs in
the multi-output case. Possible improvements could concern task-specific or
otherwise optimized pre-shaped reservoirs and related further simplifications
of APRL. We believe that these and further investigations can give insights
into the ways recurrent learning works and can hereby lead to even more
efficient algorithms.

Acknowledgments

We would like to thank three anonymous reviewers for detailed and valuable
comments, which helped very much to improve the manuscript.

A Matrix notation of APRL

In this appendix section, we give the matrix representation of the Atiya-Parlos
learning rule (following a similar notation as in [1]).

15

The following definitions will be used:

D(k) = diag (f ′(x(k))) , (A.1)

γ(k) = −e(k) + [(1 − ∆t)I + ∆tWD(k − 1)] e(k − 1), (A.2)

B(K) =
K
∑

k=1

γ(k)f(xT (k − 1)) = (bij(K)) , (A.3)

V(K) =
K−1
∑

k=0

f(x(k))f(xT (k)) + εI. (A.4)

where ε is a small constant which ensures invertibility of V(K). The learning
rule (7) then can be written as

∆Wbatch(K) =
η

∆t
B(K)V−1(K). (A.5)

The matrices B(k) and V(k) can be obtained recursively as

B(k) = B(k−1) + γ(k)f(xT (k−1)), (A.6)

V
−1(k) = V

−1(k−1) −
V
−1(k−1)f(x(k−1))[V−1(k−1)f(x(k−1))]T

1 + f(xT (k−1))V−1(k−1)f(x(k−1))
(A.7)

where we use the small rank matrix inversion lemma in (A.7). The online
update applies at each time step the increment

∆W(k) = ∆Wbatch(k) − ∆Wbatch(k−1)

=
η

∆t

[

B(k)V−1(k) − B(k−1)V−1(k−1)
]

=
η

∆t

[

γ(k)f(xT (k−1)) + B(k−1)
]

V
−1(k) −

η

∆t
B(k−1)V−1(k−1)

=
η

∆t

[

γ(k)f(xT (k−1)) + B(k−1)V−1(k−1)V(k−1)
]

V
−1(k)

−
η

∆t
B(k−1)V−1(k−1)

=
η

∆t
γ(k)f(xT (k−1))V−1(k) + ∆Wbatch(k−1)

[

V(k−1)V−1(k)−I
]

(A.8)

Observing that η

∆t
γ(k)f(xT (k−1))V−1(k) = ∆Winst(k) is the least squares

solution of (7) for e(k′) = 0, k′ 6= k we obtain (9) discussed in Section 2.1.

The recursions in (A.6) and (A.7) lead to the continuous time online algorithm:

Algorithm 1. (1) Initialize x(0) and W(0).

16

(2) k=1:

x(1) = (1 − ∆t)x(0) + ∆tW(0)f(x(0)),

γ(1) = −e(1),

B(1) = γ(1)f(xT (0)),

V
−1(1) = I/ε − f(x(0))f(xT (0))/[ε2 + εf(xT (0))f(x(0))], 1 � ε > 0,

W(1) = W(0) + ∆W(1) = W(0) +
η

∆t
B(1)V−1(1).

(3) k=k+1:

x(k) = (1 − ∆t)x(k − 1) + ∆tW(k − 1)f(x(k − 1)),

γ(k) = −e(k) + [(1−∆t)I + ∆tW(k − 1)D(k−1)] e(k−1),

∆W(k) =
η

∆t

[γ(k)−B(k−1)V−1(k−1)f(x(k−1))] [V−1(k−1)f(x(k−1))]T

1 + f(xT (k−1))V−1(k−1)f(x(k−1))
,

W(k) = W(k−1) + ∆W(k),

update B(k), V−1(k−1) according to (A.6), (A.7),

(4) Repeat step 3 for all data points.

By counting only multiplications, we have n(1 + 3nO) operations for the com-
putation of γ(k). For ∆W(k) we need to compute B(k−1)V−1(k−1)f(x(k−1)),
V
−1(k−1)f(x(k−1)) and the outer product in the numerator, yielding a total

of 4n2 operations. The update of B(k) needs n2 operations and V
−1(k) can be

computed in 2n2 operations. Altogether we have 7n2 + 3nOn + n operations
and the complexity of continuous-time online APRL is O(n2).

B Proof of Proposition 1

In this section, we proof Proposition 1. For convenience, we repeat equa-
tion (13) and use sij = wi1(0)

wj1(0)
for the constant scaling factors.

∀k ∀i > 1 ∀j > 1 ∀h : ∆wih(k) =
wi1(0)

wj1(0)
∆wjh(k) = sij∆wjh(k) (B.1)

In the following Lemma similar formulas can be derived for γ(k), B(k) and
the first column of the weight matrix W(k).

17

Lemma 2. Let i > 1, j > 1. Then ∀k

γi(k) =
wi1(0)

wj1(0)
γj(k) = sijγj(k), (B.2)

bih(k) =
wi1(0)

wj1(0)
bjh(k) = sijbjh(k), (B.3)

wi1(k) =
wi1(0)

wj1(0)
wj1(k) = sijwj1(k). (B.4)

Note that wj1(0) 6= 0 can be assured by the initialization of the weights.

PROOF. Note that for one output neuron only the first component of the
error vector e(k) is non-zero, ∀k , ∀i > 1 : ei(k) = 0. We show (B.1) and (B.2)
to (B.4) by induction on the time step k.

k=1: Let i > 1, j > 1. Then

γi(1) = −ei(1) = 0 = −ej(1) = γj(1)

bih(1) = γi(1)f(xT
h (0)) = 0 = γj(1)f(xT

h (0)) = bjh(1)

∆wih(1) =
η

∆t

∑

l

bil(1)[V−1(1)]lh = 0 =
η

∆t

∑

l

bjl(1)[V−1(1)]lh = ∆wjh(1)

Since these quantities are equal to zero, (B.2), (B.3) and (B.1) hold. (B.4)
follows immediately:

wi1(1) = wi1(0) + ∆wi1(1) = wi1(0)

= sijwj1(0) = sij(wj1(0) + ∆wj1(1)) = sijwj1(1).

k ⇒ k+1: Let i > 1, j > 1 and suppose that (B.1) to (B.4) hold for all k′ ≤ k.
From the formula for γ(k + 1) we get

γi(k + 1)

γj(k + 1)
=

−ei(k + 1) +
∑

l [(1 − ∆t)I + ∆tW(k)D(k)]il el(k)

−ej(k + 1) +
∑

l [(1 − ∆t)I + ∆tW(k)D(k)]jl el(k)

=
∆t wi1(k)f ′(x1(k))e1(k)

∆t wj1(k)f ′(x1(k))e1(k)
=

wi1(k)

wj1(k)
=

wi1(0)

wj1(0)
= sij. (B.5)

We have used that ei(k + 1) and ej(k + 1) are zero for i, j > 1. The sum
contributes only the term for l = 1 and since i 6= 1 the identity in the square
brackets vanishes. The last equality follows from the induction hypothesis.

The case γj(k +1) = 0 can occur only for e1(k) = 0 as in (B.5) f ′(x1) > 0 and
wij 6= 0, but then γi(k + 1) = 0 = γj(k + 1) and (B.2) trivially holds.

18

For B(k + 1) we get

bih(k + 1)

bjh(k + 1)
=

bih(k) + γi(k + 1)f(xT
h (k))

bjh(k) + γj(k + 1)f(xT
h (k))

=
sij

(

bjh(k) + γj(k + 1)f(xT
h (k))

)

bjh(k) + γj(k + 1)f(xT
h (k))

= sij.

We have used (B.2) and the induction hypothesis to substitute γi(k + 1) and
bih(k). If bjh(k + 1) = 0, then also bih(k + 1) = 0 and thus (B.3) holds. Now
we turn to ∆W(k + 1). We cancel η

∆t
and the denominator and get

∆wih(k + 1)

∆wjh(k + 1)
=

(γi(k + 1) −
∑

l bil(k) [V−1(k)f(x(k))]l) [V−1(k)f(x(k))]
T

h

(γj(k + 1) −
∑

l bjl(k) [V−1(k)f(x(k))]l) [V−1(k)f(x(k))]Th

=
sij (γj(k + 1) −

∑

l bjl(k) [V−1(k)f(x(k))]l)

γj(k + 1) −
∑

l bjl(k) [V−1(k)f(x(k))]l
= sij.

The terms [V−1(k)f(x(k))]Th cancel. We used (B.2) and (B.3) to substitute
γi(k + 1) and bil(k). If ∆wjh(k + 1) = 0, then also ∆wih(k + 1) = 0 and
hence (B.1) holds. Finally,

wi1(k + 1)

wj1(k + 1)
=

wi1(k) + ∆wi1(k + 1)

wj1(k) + ∆wj1(k + 1)

=
sij (wj1(k) + ∆wj1(k + 1))

wj1(k) + ∆wj1(k + 1)
= sij,

where we have used (B.1) and the induction hypothesis to substitute wi1(k)
and ∆wi1(k + 1). If wj1(k + 1) = 0, then also wi1(k + 1) = 0 and conse-
quently (B.4) holds. Altogether it follows that Proposition 1 and Lemma 2
hold.

References

[1] A. F. Atiya, A. G. Parlos, New Results on Recurrent Network Training: Unifying
the Algorithms and Accelerating Convergence, IEEE Trans. Neural Networks
11 (3) (2000) 697–709.

[2] B. Hammer, J. J. Steil, Tutorial: Perspectives on Learning with RNNs, in: Proc.
ESANN, 2002, pp. 357–368.

[3] B. A. Pearlmutter, Gradient Calculations for Dynamic Recurrent Neural
Networks: A Survey, IEEE Trans. Neural Networks 6 (5) (1995) 1212–1228.

[4] H. Jaeger, The “echo state” approach to analysing and training recurrent neural
networks, Tech. Rep. 148, GMD (2001).

19

[5] H. Jaeger, Adaptive nonlinear system identification with echo state networks,
in: S. T. S. Becker, K. Obermayer (Eds.), Advances in Neural Information
Processing Systems 15, MIT Press, Cambridge, MA, 2003, pp. 593–600.

[6] W. Maass, T. Natschläger, H. Markram, Real-Time Computing Without Stable
States: A New Framework for Neural Computation Based on Perturbations,
Neural Computation 14 (11) (2002) 2531–2560.

[7] T. Natschläger, W. Maass, H. Markram, The “liquid computer”: A Novel
Strategy for Real-Time Computing on Time Series, TELEMATIK 8 (1) (2002)
39–43.

[8] U. D. Schiller, J. J. Steil, On the weight dynamics of recurrent learning, in:
Proc. ESANN, 2003, pp. 73–78.

[9] S. Hochreiter, The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions, Int. J. Uncertainty, Fuzziness and
Knowledge-Based Systems 6 (2) (1998) 107–116.

[10] O. E. Rössler, An equation for continuous chaos, Phys. Letters 57A (5) (1976)
397–398.

[11] J. J. Steil, Input-Output Stability of Recurrent Neural Networks, Cuvillier
Verlag, Göttingen, 1999, (also: Phd Thesis, Faculty of Technology, Bielefeld
University, 1999).

[12] U. D. Schiller, Analysis and comparison of algorithms for training recurrent
neural networks, Master’s Thesis, Bielefeld University, ,
http://www.ulfschiller.de/publications/diploma.pdf (April 2003).

20

