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No line of sight Occluded by a hand or part of object

In the dark

Around obstaclesInside containers

…and animate

Extreme!

Deformable…



Contour-following and edge-tracking

Tactile servoing
(e.g. Chen et al., 1995)

Visual servoing
(e.g. Nakhaeinia et al., 2014)

Vision, force, and accel.
(Koch et al., 2013)

Probabilistic active tactile perception
(Martinez-Hernandez et al., 2013) 3



A twist on the traditional contour-following task

Goal:
Learn to close a ziplock 
bag using touch and 
proprioception alone.

Challenge:
Manipulation of a 
transparent, deformable 
object whose functional 
features are occluded 
by the fingertips.
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Hellman, R.B., ‘Haptic Perception, Decision-making, and Learning for Manipulation with Artificial Hands’, Arizona State University, 
Tempe, AZ, Aug. 2016.



Testing with preplanned trajectories and
without closed-loop haptic perception
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Reinforcement learning

• Exploration (trial and error) is used to learn how 
different actions are rewarded from a given state.

• Exploitation is used to select actions based on a 
policy and typically only occurs once the state-
action space has been reasonably mapped out  
(i.e. learned).

• We considered two reinforcement learning 
algorithms
– Q-learning (benchmark)
– Contextual Multi-armed Bandits

• Variant: Single agent learner with uniform partitions
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Multi-Armed Bandits (MABs)

• Given limited resources 
(hardware life, researcher time), 
what actions should you take?
– Tactile data are expensive!

• Benefits of MABs:
– Can balance exploration vs. exploitation of the state-action 

space during policy learning. 
– Guaranteed to minimize the total regret given a finite time 

horizon.
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Multi-Armed Bandit models for robot planning

2D grasp planning w/ uncertainty
(Laskey et al., 2015)

Trajectory selection for
rearrangement planning w/ uncertainty

(Koval et al., 2015)

3D grasp planning w/ uncertainty
(Mahler et al., 2016)
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Contextual Multi-Armed Bandits (C-MABs)

• Contextual MABs allow for multiple states or “contexts,” each 
of which has its own set of action-reward relationships.

• Exploration: Each context has its own action counters that 
track how many times an action has been tried.

• Exploitation: Can occur during training if all actions for a given 
context have been explored sufficiently.  

• C-MABs balance exploration with exploitation in order to 
minimize cumulative regret.
– Exploration vs. exploitation is decided by a control function D(t) that is 

a function of the current time t, the similarity within the state space, 
and the dimensionality of the action space.

Collaboration with C. Tekin and M. Van der Schaar, authors of “Distributed Online 
Learning via Cooperative Contextual Bandits.” IEEE Trans Signal Proc, 2015. 9



Preparations for reinforcement learning

• Since the zipper contour deforms as the bag is manipulated, we 
moved the fingertips relative to the zipper. 

• Actions were 0.75 cm fingertip movements from the current 
fingertip location at 0.5 cm/s.

• Fingertip orientation was constant and movements were 
constrained to the plane of the bag.

Actions
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States and Rewards

High
Reward =  0

Center
Reward = +1

Low
Reward =  0



States were classified
using deep neural nets (DNNs)

– Inputs: 19x1 feature vector of normalized changes in 
impedance electrode data (fingerpad deformation)

– Outputs: Low, Center, High labels

– DNN had three hidden layers and 512 nodes per 
hidden layer.

– Trained on 7,200 trials (90% of data) and validated 
with 800 trials (10% of data).

* Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … Zheng, X. (2016). “TensorFlow: Large-Scale Machine 
Learning on Heterogeneous Distributed Systems.” arXiv:1603.04467.

• The DNN performed with 89% and 86% accuracy on the 
training and validation datasets, respectively. 

• A DNN classifier was trained to fit the nonlinear tactile data 
using TensorFlow*.
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Computer vision was used to automatically 
assign rewards during supervised learning

OpenCV was used to 
autonomously extract 
the zipper offset, the 
distance between the 
center of the fingerpad
and the estimated 
location of the zipper 
along the fingerpad.
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Computer vision was used to automatically 
assign rewards during supervised learning

Green dots mark the 
centers of red circles 
placed over the 
fingernail screws
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Computer vision was used to automatically 
assign rewards during supervised learning

Yellow line marks the 
straight-line fit of the 
blue zipper
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Computer vision was used to automatically 
assign rewards during supervised learning

Blue dot marks the 
estimated location of 
the zipper along the 
fingerpad
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Computer vision was used to automatically 
assign rewards during supervised learning

Condition Reward
0 mm < offset 0

-2.5 < offset ≤ 0 +1
offset ≤ -2.5 mm 0
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Brief overview of C-MAB implementation
1. Send context (vector of tactile sensor data) to 

the DNN classifier, which returns a state label 
(“low,” “center,” “high”).

2. Calculate the control function D(t) = t z ln (t)
that depends on the similarity of the states 
and the size of the action space.

3. For the current state, check for underexplored 
actions by comparing state-action counts 
(“context arrivals”) to D(t).

4. If any counts are less than D(t), execute an 
underexplored action at random.  Otherwise, 
exploit the current policy.

5. Update expected rewards and state-action 
counts.
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Online learning of expected rewards
through exploration
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Comparison of reinforcement learning algorithms
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Comparison of cumulative rewards

• Q-learning will converge 
to an optimal policy as 
time goes to infinity, but  
C-MABs outperform       
Q-learning within a finite 
number of trials.

• While the Q-learning 
parameters could be 
manually tuned to 
improve performance, 
manual tuning is avoided 
through the use of the 
more advanced C-MAB 
learner. 
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Testing the robustness of the C-MAB policy
Novel, more flexible ziplock bag under different loading conditions:
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Testing the robustness of the C-MAB policy

Thick electrical wire
(3.5 mm diam.)

Thin electrical wire
(1.5 mm diam.)

Nylon rope
(4 mm diam.)

Novel, deformable contours that were not zippers:
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Potential future improvements

• Expand the action space
– Online modulation of grasp pressure
– Adjustments to fingertip travel length or velocity based on confidence
– Out-of-plane movements and rotations of the fingertips

• Use adaptive algorithms to zoom in and refine regions of the 
state-action space with high context arrival counts. 

• Reduce time delays due to 3D motion planning for the 
7DOF robot arm through parallelized code and GPUs.
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• Autonomously end the task using a 
haptic cue, such as the vibratory 
“click” upon zipper closure.

Fluid pressure (fast)



Discussion
• Tactile sensor data are difficult to simulate, time consuming to 

collect, and cause wear of the robot during collection.  
Resource-conscious learning techniques are important for 
the development of new complex skills that require repeated 
interactions between the robot and the environment.

• The learned C-MAB policy makes physical sense, but is not 
what we would have naively coded.  Non-intuitive solutions 
can be found by exploring the state-action space.
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Haptic perception within granular media

Without sensors that see through 
matter, the sense of touch is essential
for locating, identifying, and grasping 
buried objects.
Challenge: Granular media can make 
haptic perception difficult.

Image from (Hoffman, 2014).
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Sparse, overcomplete feature learning
of tactile sensor data

Fluid pressure (fast)

Fluid pressure (slow) Electrode impedance

no object nearby, object nearby, contact with object
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