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Abstract— This paper proposes robust tactile descriptors and
Jfor the first time, a novel online tactile transfer learning
strategy for discriminating objects through surface texture
properties via a robotic hand and an artificial robotic skin.
Using the proposed tactile descriptors the robotic hand can
extract robust tactile information from generated vibro-tactile
signals during in-hand object exploration. Tactile transfer
learning algorithm enables the robotic system to autonomously
select and then exploit the previously learned multiple texture
models when classifying new objects with a few training
samples or even one. The experimental outcomes demonstrate
that employing the proposed methods and 10 prior texture
models, the robotic hand could identify 12 objects through their
surface textures properties with 97% and 100% recognition rate
respectively with only one and ten training samples.

I. INTRODUCTION AND BACKGROUND

Tactile information is crucial for autonomous robots for
detecting and learning the physical properties of objects.
The performance of tactile systems depends not only on the
technological aspect of the sensory device, but also on the
design of the learning methods that interpret information
contained in tactile data [1]. The object material can be
characterized and differentiated based on surface texture,
stiffness, and thermal information obtained through tactile
sensing. However, to the best of our knowledge, so far
there is no research paper addressing object discrimination
via their physical properties while the objects are in the
hand of a robot. Jamali et al. fabricated a biologically
inspired artificial finger composed of silicon within which
were two PVDF pressure sensors and two strain gauges.
The finger was mounted on a robotic gripper and was
scraped over eight materials. The Majority voting learning
method was employed to find the optimal technique for
the texture recognition problem [3]. Hu et al. used Support
Vector Machine (SVM) to classify five different fabrics by
sliding a finger-shaped sensor over the surfaces [4]. Dallaire
et al. [5] managed to classify 28 different surfaces such
as Aluminum, Plexiglas and Kitchen towel via Bayesian
non-parametric learning approach. In this respect, a three
axis accelerometer was placed on a stylus, which was then
mounted above a rotating turn-table on which the surface
was placed. Ten different surfaces were detected through an
artificial neural network by sliding an accelerometer mounted
prob over the surfaces such as wooden flooring, short hair
carpet, and tile linoleum flooring [6]. Liu et al. employed an

'Mohsen Kaboli and Gordon Cheng are with the Institute for
Cognitive Systems, Faculty of Electrical Engineering and Information
Technology, Technical University of Munich (TUM)- Germany. Email:
mohsen.kaboli@tum.de (http://www.ics.ei.tum.de)

Fig. 1. This figure shows the uniform in-hand objects considered as Prior
Objects. The Shadow Hand with the BioTac sensors is exploring the texture
properties of the in-hand objects with an identical shape. It moves any of
the fingertips to slide over the objects surface and uses the proposed tactile
descriptors to extract robust tactile information.

Fig. 2.
sidered as New Objects. Employing the proposed tactile transfer learning
the Shadow Hand discriminates new objects from their texture with a very
few trials whilst re-using prior knowledge.

This figure demenstrates the complex shape in-hand objects con-

intelligent contact sensing finger to classify surface materials
with Naive Bayes classifier [7]. Hu et al. used Support
Vector Machine (SVM) to classify five different fabrics by
sliding a finger-shaped sensor over the surfaces [4]. A robot
actively knocks on the surface of the experimental objects
with an accelerometer-equipped device to discriminate stone,
mulch, moss, and grass from each other with a lookup table
and k-nearest neighbors (K-NN) techniques [8]. A multi-
modal tactile sensor called BioTac was used to perceive
tactile information. In this experiment one BioTac sensor
was placed on a customized tool and a vibration-free linear
staged was used to slide textures under the tactile sensor. In
[9], the Shadow Hand with the BioTac sensor on the index



fingertip and Bayesian exploration technique were employed
to discriminate 10 different objects from each other by
executing exploratory movements over the objects surface.
However, the existing texture classification methods are not
able to re-use the past experience or prior learned texture
models (tactile transfer learning). The focus of this study is to
propose a set of robust tactile feature descriptor for active in-
hand object recognition via surface texture properties. For the
first time in the community of the tactile object recognition,
we propose an online tactile transfer learning method to
enable robotic hands to re-use their prior tactile knowledge
to discriminate new in-hand objects (through their textural
properties) with a few available training samples or even
one (one-shot tactile learning).

II. SYSTEM DESCRIPTION
A. Robotic Hand

The Shadow Hand is a dexterous Robotic Hand System
with five fingers and 20 active degrees of freedom in total,
which enables the robot to have a range of movement
equivalent to that of a human hand (see Fig.1).

B. Multi-Modal Artificial Skin

The BioTac is a multi-modal tactile sensor. When the sen-
sor moves over an object, caused vibration can be measured
by a dynamic pressure signal (P4c) with the sampling data
rate of 2 KHz. Moreover, BioTac has 19 impedance-sensing
electrodes (Ej, ..., E19) measuring the deformation that arises
when normal forces are applied to the surface of the skin with
a 50 Hz sampling rate (see Fig.1).

C. Properties Of Experimental Objects

In this work 22 everyday objects were selected. 10 objects
with an identical geometrical shape including a Red and a
Yellow ball with almost similar smooth surface texture, a
Rough textured ball, an Orange, an apple, a Colorful ball
with smooth and non-uniform texture, a Rough spherical
sponge, a Pine apple textured ball, a String ball, and Mirror
ball (see Fig.1-Prior Objects). Also, 12 objects with different
shapes including a Soft Sponge, a Memory sponge (non-
uniform texture), a Toothbrush (non-uniform texture), a Floor
brush, a Rough textured star, a Soap, a Spray, a Coffee
capsule, a Paper box, a Cream tube, a Plastic baby feeder, a
Metal ruler (see Fig.2-New Objects).

D. Data Collection With Prior Objects Set

In this scenario, the Shadow Hand held each of the
spherical shaped prior objects (see Fig.1-Prior Objects) in
palm with three random fingers. Afterwards, the robotic hand
explored the texture of each in-hand object by randomly
moving the remaining free fingers (two fingers) over the
surface of the object for 3 seconds. The texture exploration
was repeated 50 times for each prior objects with random
orientation. The collected tactile data for each object then
randomly divided in tow sets, one with 30 samples for the
training and the other one with 20 trials for the testing.
Altogether, 300 training and 200 testing samples for 10 prior
objects.

E. Data Collection With New Objects Set

In this case, the Shadow Hand used three fingers to
hold each complex shaped object (Fig.2-New Objects). The
exploration carried out with the remaining two fingers by
sliding over the surface texture of the object for 3 seconds.
The rest of data collection procedure remained as same as
described before.

II1. Proposed Feature Descriptors

The generated tactile signals were measured by pressure
sensor (P4c) and the impedance sensing electrode array
(E1,...,Ej9). To extract robust information from vibro-tactile
signals we propose a set of parameters, called Activity,
Mobility, Complexity, linear correlation coefficient Eq.(4),
and non-linear correlation coefficient Eq.(5) [10], [11].
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where S, is the input signal, N is the number of data points,
K is the number of impedance electrodes, and R; is the
difference between the rank of (Pac); and the rank of (Ex);.

IV. PROPOSED TACTILE TRANSFER LEARNING
TECHNIQUE

Consider a scenario in which the Shadow Hand has already
constructed a set of learning models to discriminate k = 10
different surface textures using Least Squared Support Vector
Machine learning algorithm with sufficient available training
samples (in our case 300 training samples) as well as high
enough measured tactile information (tactile data collected
by five fingertips). Now the new task of the Shadow Hand
is to classify N = 12 new surface textures with one or a
very few available training samples while re-using the prior
texture models in an online manner.

1) Constructing Prior Tactile Models: 1.S-SVM was
trained with k prior object textures (in our 10 objects Fig. 1-
Prior Objects) to construct surface texture models as a prior
knowledge . By slightly modifying the regularization term
in LS-SVM, it is possible to construct new discriminating
texture models for the new objects (see Fig.2-New Objects)
close to the already constructed prior models.



2) Prior Tactile Knowledge Selection: Suppose there are
already k = 10 constructed models, and N new object tex-
tures with T available training samples for each new object
textures (X;,y;) t =1,...,T . The optimization problem has
the same cost function as LS-SVM in which the regularize
term has been modified to impose closeness between the
new object texture models and a linear combination of prior
models.

3) Online Tactile Transfer Learning: The proposed on-
line tactile transfer learning in [12] is a hybrid algorithm
which integrates the prior and new models via the adapted
version of LS-SVM in order to properly initialize the PA
algorithm (see Algorithm 1). w; is composed of two parts.
The first part is the linear combination of the weighted
prior models where wy is the prior model, A is the scaling
factor, and k is the number of prior models. The second
part represents the received new training samples in which
T is the number of the samples. Now, the PA algorithm uses
the new initial models w; instead of the w; = (0,...,0) to
learn from the (4 ) —th new incoming samples. So far, we
initialized the PA leaning algorithm by integrating the prior
and new models. But, still, the prior models are not directly
re-weighted during the on-line learning process. We describe
here how during the on-line learning progressively update
the prior and new models weights in time. In this case, the
prediction can be made on each new incoming samples by
means of the current constructed models (see Algorithm 1)
as wi-X;. The results of the prediction oy, will be cropped
between -1 and 1 and will be used as the (d 4 k) —th element
in the feature vector descriptor of x;.

Algorithm 1 :
For t=1
Initialize PA:

Proposed Online Tactile Transfer Learning

Wit = (wi,1) € R, where
where Wi = ():ﬁil AW + YL aix))

T=10
New Comming Samples

For t=1,2,...,T
Input to PA: X;

X, = (X,014,...,0,) ERITE =1
Augmented Samples
where: o = max{—1,min{1,w;-X}} = o, € [—1,1]
o Prediction: j, = sign(w'y;-x/;)

« Suffer loss: ¢; = max{0,1 —y,w',-x;}
« update:

. max{{; } }
1.set 6; = min {17, PAE
2.update: Wi, =Wy, +0,yxX,

V. EXPERIMENTAL RESULTS
A. Constructing Prior Tactile Model

In order to build up a 10 prior models with the collected
training samples during the prior object textures exploration
the LS-SVM classifier was employed. The entire training
samples (30 training samples for each prior texture and
all together 300 training samples) were split in to parts,
70% for training and 30% for the test. Five-fold cross
validation was applied in order to find the optimal kernel
parameter and regularizer value C. LS-SVM was re-trained
with entire collected training data and the optimal found
parameters to construct 10 prior leaning models. The learning
models (w,b) € R'° were evaluated by predicting on unseen
collected test data (20 test samples for each class of prior
texture and altogether 200). The LS-SVM could manage to
classify successfully 10 prior textures with 100% recognition
accuracy.

B. Evaluation of proposed Online Transfer Learning

In this experiment, the Shadow Hand used the proposed
tactile transfer learning technique to recognize 12 new sur-
face textures while re-using ten k = 10 already learned prior
models together with learning from a very few training
samples. In this scenario, the collected training samples (see
Fig.2-New Objects) during new textures exploration entered
to the proposed hybrid online transfer learning sequentially
one after one to construct new hybrid learning models. At
each time ¢ = 1,..., 10, the constructed leaning models were
evaluated by predicting on unseen test data collected during
the new object textures exploration (20 test samples per
new textures). The prediction results were reported as a
recognition rate in Fig. 3.

C. Baseline

In order to compare our obtained results the traditional PA
algorithm was employed to construct surface texture models
while receiving new training samples continuously over
time (one new texture per time ¢ (t = 1,---,10)). The new
constructed learning models at each time ¢ were evaluated
by predicting on unseen test data (20 test samples per
new textures). The classification results were reported as a
recognition rate in Fig. 3. The value for 1 was fixed to 1 in
both hybrid online transfer learning and PA online leaning
(base line). Fig. 3 shows that using our proposed hybrid
online transfer learning method the Shadow Hand could
discriminate 12 new texture with 97% recognition accuracy
while using only one training sample plus 10 prior models.
By increasing the number of training samples from one to
ten, the Shadow Hand achieved 100% recognition accuracy.
The results in Fig. 3 illustrates that our proposed method
outperforms the traditional online learning. Although the
PA achieved lower classification accuracy compare to the
proposed methods, PA achieved 78% and 97% recognition
accuracy while learning from one and ten training samples
respectively. The obtained high classification performance
by PA is due to the fact that our proposed feature descriptors



provided the PA algorithm with information-rich tactile data.

1) Negative Knowledge Transfer Consistency: In trans-
fer learning scenario the constructed prior models are not
always relevant for new object models. If the prior models
are dissimilar to the new models, brute force transfer can
degrade the recognition performance generating so called
negative knowledge transfer. Ideally, a transfer learning
method should be beneficial between prior and new models
while avoiding negative transfer when the object surface
textures are not a good match. We show that our proposed
tactile transfer learning technique is robust against of the
negative knowledge transfer. In this respect, Expectation
Maximization algorithm was employed to find out which
of the new object textures are similar or dissimilar to the
prior textures. In this case, the EM was trained with entire
training samples (10 samples per each texture) to cluster all
available 20 objects (both prior and new object textures).
The EM then was evaluated by unseen test data (20 samples
per each texture). In this scenario, Spray, Metal ruler, Pine
apple, and String ball were selected as a set of new textures
while the prior textures were remain same. The hybrid online
transfer learning was employed to discriminate the four new
textures and traditional PA was used as a base line. The
procedure was the same as describe above. Fig. 4 shows the
classification results in terms of recognition accuracy. The
illustrated results clearly shows that the obtained recognition
performance while using the proposed hybrid online transfer
learning is similar to the performance achieved while using
the traditional PA. This means that our algorithm stopped
transferring irrelevant prior knowledge to new task (see
Fig. 4).
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Fig. 3. This figure shows the recognition results on a separate test data
for the online tactile transfer learning and traditional PA online learning
(No-Transfer) methods. In this experiments 10 prior models were re-used
by the Shadow Hand as prior tactile knowledge.

VI. CONCLUSION

We proposed robust tactile descriptors for active in-hand
object recognition task. Furthermore, for the first time,
we designed an online tactile transfer learning methods to
provide the robotic systems with the ability of re-using
previously learned tactile models (prior models) to dis-
criminate new in-hand objects with a very few available
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Fig. 4. This figure shows the recognition results corresponding to hybrid
tactile transfer learning and traditional transfer learning (No-Transfer) in
which the new surface textures were dissimiar to the prior textures. The
recognition results on the test set were plotted as a function of the number
of the trainig samples

training samples. In this study, the distributions of the tactile
information in both prior knowledge and new tasks were
similar.
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