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Tactile feedback is essential for dexterity.

Humanlike tactile sensing is NOT about force sensors:

1. Exploratory movements
2. Mechanical properties
. Multimodal sensing
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Engineered Transducers
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The BioTac Design Approach

Biomimetic Mechanics

Cutaneous Touch

Vibrations

Force &
Deformation

BioTac developers and SynTouch founders
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Deformation Sensing

e Forces deform skin and fluid

Electrode A

* Impedance changes are
sensed by electrodes

 Raw data can be used with
machine learning techniques
to extract features:
e Tri-Axial Force
e Point of Contact
e Radius of Curvature

Wettels, Popovic, Santos, Johansson, Loeb.
Advanced Robotics (2008)

Large Tangential Force  No Tangential Force

Wettels, Smith, Santos, Loeb. IEEE Intl Conf
Biomed Robotics and Biomechatronics (2008)



Impedance: Probing about an Electrode
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Localized, wide dynamic range: 0.03 -50 N
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Tri-axial force vectors extraction on BioTac

Oblique Force
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Force vector extraction and control

root mean squared error = 0.4210 N
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The skin enveloping lateral impedance electrodes provides
compliance and radius-of-curvature discrimination.

Lateral electrodes 17
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Exploring Complex Shapes:
Deconvolving Contour and Friction

~ Tilted aluminum plate

Barrett Hand



Vibration Sensitivity Fuid
Similar size, shape Flexible skin — \. |
and structure as the ~ over liquid AN\
human fingertip “pulp” 3

Similar mechanical properties and
dynamic response as the human finger
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Fingerprints Greatly Enhance
Sliding Vibration Amplitude

Hydro-Acoustic
Pressure Sensor
(Hydrophone)

Incompressible
Liquid

Elastomeric Skin
with Fingerprints
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Fingerprints Enhance Vibration Spectra
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When is Tactile Sensing Necessary?

* Dexterous Manipulation = “Perception for Action”
— Contact timing
— Grip adjustment
— Slip detection

* Object Characterization = “Action for Perception”
— ldentify without vision
— Anticipate handling properties

« Utility of related objects = “Affordances”



Incipient Slip and Grip Adjustment

Jeremy Fishel, SynTouch



Incipient Slip Detection During Tremor-Grip

Vertical Sandpaper Tremor Scissors Experiment (jeremy_sandpaper_v)
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Incipient Slip Detection During Tremor-Grip

Vertical Sandpaper Tremor Scissors Expenment (jeremy_sandpaper_v)
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Perception for Action: Fragile Grasp

OttoBock Health Care

Prosthetic hands typically operate with the motors stalling
on objects with high forces (up to 100N).

It is very difficult to grasp fragile objects without intense
visual feedback to control finger position.
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B Part Misalignment Mitigation

¥ % Displacement
=

Detect
contact:

Translate wrist or
adjust finger
to avoid:

Ejection




Actions for Perception
|dentifying Objects by Touch

Static contact

Pressure

[Lateral motion

W\

Temperature Hardness Surface texture
Contour following Enclosure Unsupported holding
e

Global shape, exact shape

e

B
KK

Global shape, volume

Weight

25

Source: S. Najarian, et al. (2009) “Artificial Tactile Sensing in Biomedical Engineering”.




Test: Artificial Texture Discrimination

[.ateral motion
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Surface texture

Texture
Discrimination
How?

Exploratory Movements
Which Ones?

Fishel, J.A. and Loeb, G.E. Bayesian exploration for intelligent identification of textures.

Frontiers in Neurorobotics, 2012



Artificial Texture Discrimination
Requirements: Biomimicry

e Tactile Vibration Sensitivity:

near human performance

* Texture Exploratory Movements:

inspired from human behavior

* Relevant Texture Properties:

from language humans use

* Intelligent Exploratory Strategies

inspired by theories of biological behavior



Pilot Study — Which Movements are Best?

Force

Power U Force™ velocity

1)
Best for Traction Too Much Power
Discrimination (wears skins)
3)

Best for Fineness
Discrimination
2)
Not EnOl:lgh Power Best for Roughness
(no signals) Discrimination

Velocity



Texture Properties (from Language)

* Traction: sticky / slippery
Thrust (from motor)
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Bayesian Inference

P (A |B) = P(BJ;E[});)D (A) Bayes’ Theorem

Used to update probabilities of textures
after a movement and observation is made...

How do people decide which movements
to make when exploring textures?



Theory: Bayesian Exploration

Unknown Object:

1) Grasp: Figure out shape/size

=» Rectangular, Large

Z) Pick Up: Is it Heavy?

It’s a Brick!

= Heavy



Bayesian Exploration

Database: Motor Action 1.

Confusion probability

matrices between

entities for all percepts
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Perform exploratory
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117 Textures! 5 Trials Each

Movement

Glasses Foams  Rubbers Leathers Cloths Weaves

Papers

Art Supplies Woods Metal Finishes Plastics Vinyls
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Validation Trial

Silicone Rubber
Correct! Sometimes rapid identification
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Correct! Sometimes tests a few hypotheses
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Validation Trial

Velcro

Sometimes difficulty distinguishing
two materials that humans
cannot distinguish either
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Validation Trial

Velcro
Smooth Cardstock

Correct!
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Validation Trial

Z o6 Silicone Rubber
1) g‘“* " Correct! Sometimes, Quick
] Identification

16 Validation Textures
Average: 95.4% Correct Classification
Median Movements to Converge: 5

WO: SMO0O ardstoc
and Balsa Wood

Smooth Cardstock
Correct!




Quantifying Touch

Measures 15 properties related to:
Texture, Friction, Compliance,
Thermal Properties and Adhesion

jriele)

RO

Texture

mCO

il mTX

cDF

aTK

Compliance

/tPR
tCO

cY Thermal

: If you can feel the difference,
& we can quantify it!

touch




Representing the World in the Brain

Motor Repertoire Sensory Dimensions

Individual Ia
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Bayesian Action&Perception:

Representing the World in the Brain

Mental

Experience
Recently expanded to 500 materials

explored by 5 movements Inference Exploration
to create 15 perceptual dimensions, ‘
resulting in
MORE ACCURATE and FASTER Perception Action
performance.

Avoids “curse of dimensionality”

Sensors | Actuators

G.E. Loeb and J.A. Fishel, 2014 SyntOUCh

Frontiers in Neuroscience, doi: 10.3389/fnins.2014.00341

Physical




