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Abstract

Topology-representing networks, such as the SOM and
Growing Neural Gas (GNG) are powerful tools for the
adaptive formation of maps of feature and state spaces
a broad range of applications. However, these algorithm
suffer severe difficulties when their training inputs ar
strongly correlated. This makes them unsuitable for th
on-line formation of maps of state spaces whose explorati
occurs most naturally along trajectories, which is typica
in many applications in the fields of robotics and proces
control. Based on investigations of the SOM and th
GNG for these cases, we devise a new network model,
“Instantaneous Topological Map” (ITM) that is able to
overcome these difficulties and form maps from strong
correlated stimulus sequences in a fast and robust mann
This makes the ITM highly suitable for mapping of sta
spaces in control tasks in general and especially in robotic
where workspace limitations are complex and probab
more easily explored than analyzed and coded by hand.

Introduction

The enormous success of Kohonen’s famous and beautifu
simple self-organizing map [6][8] has inspired a large bod
of work towards even more powerful algorithms for th
adaptive creation of topology-representing mappings of va
ious feature and state spaces [3][1][10]. The common ma
ematical foundation of these approaches is usually of s
tistical nature, e.g., error minimization [5] or entropy maxi
mization [2], with a few exceptions, like the PSOM, which
is based on an interpolation approach [9].

While the SOM and their closer cousins are characteriz
by a pre-specified and fixed map topology (a 2d grid in mo
cases) which is then matched against the data, subsequ
research has addressed the issue of identifying a suita
topology as part of the learning process. This ability
helpful when the correct topological structure of the da
is unknown a-priori, such as, e.g., when creating maps
environments containing obstacles of unknown shape. W
will use such a mapping task to evaluate neural networ
throughout this paper.
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Among the algorithms that have come into more wide
spread use, a particularly interesting proposal —related
the neural gas of Martinetz [7]— has been due to Fritzk
[4]. His “Growing Neural Gas” (GNG) starts with a “gas”
of nodes and builds the required links during learning, in
serting new nodes in regular intervals and in regions whe
an averaged approximation error for the processed data
largest. An “aging mechanism” to remove links that hav
become obsolete due to the migration of nodes to new po
tions also endows the GNG with some capability to adapt
slowly changing topologies.

While the GNG thereby extends the adaptive capabilities
the SOM, the design of both algorithms is still heavily base
on the assumption that the training stimuli arestatistically
uncorrelated. Below, we will consider the behavior of the
SOM and the GNG when this assumption is violated. I
particular, we will focus on the case when strong correl
tions are present due to stimuli that have been generated
exploration of the state or feature space along continuo
trajectories, which is a frequent case in robotics and cont
applications. We will show that in this case both method
face severe degradation, which excludes their use for ma
on-line applications in the aforementioned fields.

Based on an analysis of the difficulties of the GNG whe
trained with trajectory data, we then propose a different s
of adaptation rules, leading to a new algorithm which n
longer relies on statistical independence of its training da
and which is particularly well suited for rapidly forming
topology-representing maps even for training data with
strong serial correlation. We call this algorithm “Instanta
neous Topological Map” (ITM), since it no longer require
the maintenance of any averages accumulated over tim1

Instead, it only uses information that is local both in spac
and in time, making it computationally extremely efficien
without sacrificing the advantages of the GNG. We compa
the performance of the ITM with the GNG and show tha
it leads to significantly faster adaptation without any signi
icant loss in the quality of the generated maps. We th
present our conclusions and discuss some possibilities
future work.

1Other than the main variables, i.e., the node positions and the inser
edges themselves.
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Figure 1: Stimulation of a SOM with a random walk trajectory
At low learning rates (left), the topology remains intact and th
network will adapt correctly in the long term. If faster learning is
desired, raising the learning rate (right) in this setting turns out
be a bad idea. Individual nodes “attach” to the trajectory, there
destroying any already established topological integrity.
li.
nal
Improving the GNG for Correlated Stimuli
the
es
Our main interest is in situations where exploration of th
state or feature space occurs along continuous trajec

ries, possibly with some moderate amount of superimpos

noise. As our data model to mimic that situation we con

sider a (discrete) random walk with small step sized, given

by
~x(t+ 1) = ~x(t) + ~p(d, α(t)) and
(1)
α(t+ 1) = α(t) + η,

~p(d, α) is the polar coordinate representation of a ste
where
of lengthd in the angular directionα, andη is a random

variable. The step lengthd remains constant while the an-

gleα changes by uniformly distributed random amountsη.
g
Workspace limits are implemented by simply forbiddin

h-
steps that lead outside of the allowed area.
c
If we try to form a map of the state space explored by su
sequences using the standard SOM algorithm, we obse

a very strong dependence on the size of the learning ra
r
At low rates, the topology remains intact, but nodes igno

the trajectory information presented. At high rates, a sing
-
node “follows” the random walk path, disrupting the topol
es;
ogy and destroying information that has already been acc

mulated from previous samples (see fig. 1).
i
r-
A partial reduction of these difficulties can be achieved b

providing a suitable “healing mechanism” for the topolog

cal disturbances that are introduced by the correlated sti

ulus motion. The ability of the GNG to adjust its topology

to the situation can already fill this need to some extent, a

though we shall soon see that the healing effect is still to

weak to allow a satisfactory performance.
s
l

However, first we wish to briefly recall the main ingredient
of the GNG in order to provide the background for the fo
ps
lowing discussion and for the design of the ITM in the nex

ir
section.
.
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Figure 2: Adaptation of a standard GNG with correlated stimu
The network has been parametrized in such a way that the fi
result approximately matches that of the enhanced GNG and
ITM. Especially in the starting phase, the standard GNG leav
large portions of the trajectory uncharted.
The basic GNG algorithm works on a set of nodesi, each
represented by a weight vectorwi and an accumulated er-

ror ei, and a set of edgesj with an age valueaj . The adap-

tation with a new stimulusξ consists of four distinct steps.
p

1. Matching: Find the noden nearest to the stimulusξ and
the second-nearest nodes.
2. Reference vector adaptation:Given adaptation ratesε1
and ε2, adapt the nearest node and its topological neig

bors as follows:∆wn = ε1 (ξ − wn), ∆wi = ε2 (ξ −
hwi) ∀ i ∈ N(n), whereN(n) denotes the set of neigh-
rvebors ofn.
te.
e

3. Edge update:(i) Create an edge connectingn ands if it
does not already exist. Set that edge’s age to zero.(ii) Incre-
lement the age of all other edges emanating fromn and delete

any whose age surpasses a givenamax. When deleting an
u-edge, check the other referenced node for emanating edg

if there are none, remove that node as well.
y
-

4. Node update:(i) Increment the error measure of the nea
est node:∆en = ‖ξ − wn‖2. (ii) Add a new node everyλ
m-adaptation steps by finding the nodeq with maximum ac-

cumulated error and its neighborr with maximum accumu-
l-lated error:q = arg maxi ei, r = arg maxj∈N(q) ej . Make

oa new units with ws = 1

2 (wq + wr) and initialize its er-

ror with eq. Decrease the errors ofq, r, ands by a given

factorα. (iii) Multiply the errors of all nodes with a decay

factord, so that they cannot grow indefinitely.
-

t The familiar matching and reference vector adaptation ste

are the heritage of Kohonen’s SOM. We will discuss the
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Figure 3: Improved GNG using an error threshold. Input is th
same sequence used in fig. 2. In the startup phase, neurons
now created much faster to learn the trajectories traversed. As
error approaches the desired value, fewer new nodes are added
e)
m-
ill
changing role in the ITM later on. The topological adapta
tion steps, though, deserve a closer look.
-

d
in-
The edge creation rule builds an edge of the Delaunay t
angulation, given that the weight vectors of the nearest a
tic
second-nearest nodes are on opposite sides of the stimu

e
because in this case, the nearest and second-nearest n
at-
share a Voronoi cell border. An edge created in this wa

ing
may become obsolete if new nodes are created or the no
a
move. The aging mechanism erases such edges eventu

but finding a suitable age limit can be difficult. The sam
ot
limit may delete useful edges and still leave many usele

its
ones untouched.

e

A noteworthy fact is that the construction of a Delauna
edge does not rely on the distribution of stimuli. Edges wi
c
be constructed in the fashion described even if stimuli tou

tly
only selected trajectories in input space. The triangulatio
is not guaranteed to be complete, but that is the case

u e
both statistical and correlated series of stimuli: the Dela

e
nay edges corresponding to shorter Voronoi borders are l
likely to be constructed.
v
,

The node creation mechanism is less obvious and lea
more room for choice. The error accumulation provide
x
a means of determining the optimum position of the ne

r
node. From a statistical point of view, this is a straightfo
ward approach. In adapting to sequences of stimuli rese

bling trajectories, though, smarter node creation and de
r
tion algorithms can solve the problem of topological distu

u r-
bances created by single nodes following the trace of stim
for long distances.
Our first approach to improving node creation works b
defining a threshold value for the error,emax, with which the

error measure of the nearest neuron,en, is compared. If it

is larger, a new node is created betweenn and the neighbor-

ing node with highest error count. This small design chan

alone gives the dramatic improvement shown in figures

and 3.
The modified algorithm proves to be more flexible than sta
dard GNGs. Node creation now is a reaction to certain stim

ulus patterns, instead of being triggered by fixed extern

clock cycles. The main advantage comes from switchin

from a global method, i.e., finding the node with highest a

cumulated error, to a local method. Designing the algorith

to only use the neighborhood of a node for adaptation kee

the computational effort low even for very large networks.
e

are

the
.

The Instantaneous Topological Map (ITM)
There are still two disadvantages to keeping an error me
sure and edge age count.(i) More parameters (error decay

rate, error threshold, error distribution factor, maximal ag
- mean more hassle when optimizing a network. The para

eter values are not very critical, but a wrong choice can st

slow down the convergence considerably, or destroy it com
ri-pletely. (ii) Each slowly changing state variable (age an

nderror count) introduced into the system produces some

lus,ertia, slowing down adaptation and defining a characteris

odestimescale which must be accounted for. The amount of tim

y the network needs to react to changes in input stimulus p
destern depends very much on the choice of the correspond

lly,decay factors.
e

ssWe therefore propose a new network type which does n

need any edge aging or error accumulation to generate

map. In fact, it does not even require node adaptation. W
y call it ITM, for “Instantaneous Topological Map”.

ll

h
n

The ITM consists of a set of neuronsi with weight vec-
torswi, and a set of undirected edges, represented implici
forby specifying a set of node neighborsN(i) for each nodei.2
- The network starts out with only two connected nodes. Th

ssadaptation triggered by a new stimulusξ consists of the fol-

lowing steps:
es
s

1. Matching: Find the nearest noden and the second-
nearest nodes (with respect to a given distance measure
t e.g., the Euclidean distance):n = arg mini ‖ξ − wi‖,

- s = arg minj,j 6=n ‖ξ − wj‖.

m-

le-
-

2. Reference vector adaptation:Move the weight vector of
the nearest node toward the stimulus by a small fractionε:
li 2TheN(i) are further constrained by the requirement that neighbo

hood relations between a pair of nodes shall always be symmetric.
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Figure 4: ITM network charting the same trajectory sequence
in fig. 2. The adaptation rateε is not critical in this method, it can
safely be set to zero.
∆wn = ε (ξ − wn). Below we will show that this step can
even be omitted.
3. Edge adaptation: (i) Create an edge connectingn and
s if it does not already exist.(ii) For each memberm of

N(n) check ifws lies inside the Thales sphere throughwn

andwm. If that is the case, remove the edge connectin

n andm. When deleting an edge, checkm for emanat-
e

ing edges; if there are none, remove that node as well (s

fig. 5).
4. Node adaptation: (i) If the stimulusξ lies outside the
Thales sphere throughwn andws, and outside a sphere
s
aroundwn with a given radiusemax, create a new nodey

with wy = ξ. Connect nodesy andn. (ii) If wn andws are

closer than1

2emax, removes (see fig. 6).
d

m-
ept
In terms ofcomputational expense, the matching step is
the only step that scales with the number of neurons. Ed
is
adaptation scales with the average number of neighbo

es,
which is related to the local intrinsic dimensionality of the

of
input data. All other operations are independent of the num

is
ber of neurons involved. This means that the algorithm ex

ot
cutes fast even for large networks.
u-

rs
ch
Our experience with the algorithm indicates thatreference
vector adaptation (step 2) can even be omitted becaus
o uld
nodes are created and deleted swiftly if the node distributi

is found to be too sparse or too dense. The former learni

rateε, which was essential to adjust the network to fit th

input data, has now assumed the role of a smoothing para
s
eter. Choosing small values ofε makes the nodes slowly as-

ause
semble in a tidy arrangement with distances between nod
as

s

n

edge

zone
creation

Figure 5: Edge addition is triggered when a stimulus hits the gr
region where the Voronoi cell ofn intersects the Voronoi cell ofs
if n were not present. Removal of edges is triggered by the Tha
sphere throughn and one of its neighbors. Ifs lies inside that
sphere, the corresponding edge is removed (the marked lower e
in the figure).
g

ee

s

n

e max

zone

creation

node

Figure 6: Node addition and removal in the ITM is guided by th
Thales sphere through the nearest two nodes,n ands, and spheres
throughn of radiusemax and 1

2
emax.
approximately equal. The relaxation time of this proces
does not affect the network’s overall performance.
Edge creation produces a valid Delaunay edge, as state
before. This edge is then used to verify the other edges e
geanating from the nearest node. Only those edges are k

rs,which cross the corresponding Voronoi cell border. Th
eliminates all non-Delaunay edges and few Delaunay edg

-mainly those belonging to the convex hull. The advantage
e-this method compared to former edge deletion techniques

that it destroys all non-Delaunay edges and that it does n

rely on parameter tuning to do so. An exhaustive Dela

nay test which detects even small eccentric Voronoi borde
e between connected nodes would be computationally mu

nmore expensive, as the amount of calculations needed wo
ngscale with the dimensionality of the dataand the total num-

e ber of nodes.

m-
es
Node creationavoids putting new nodes inside the Thale
sphere through nearest and second-nearest node, bec
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doing this would render useless the connection just mad
If the stimulus lies farther away from the nearest node th
t
a given threshold, a new node is created at the position of

stimulus. The threshold,emax, therefore has the meaning of

a desired mapping resolution. This method is substantia
e
different from providing a learning rate, as nodes are cr

ated at a maximum speed of one per stimulus if necessary

which case the network stores the input data in weight ve
e
tors, and their order of arrival in its graph. Because nod

can still move by a small amount in this algorithm, a crite

rion is provided to remove nodes that are too close to ea

other. The threshold used is derived fromemax.
Configuring an ITM network is exceedingly easy, since
only at most two parameters need to be found: the desir
od-

resolutionemax, and, optionally, the smoothing parameterε
een
(the former learning rate).
00,

gh
M

Results
new
We use the random walk sequence of stimuli generated
equation (1) to measure and compare the performance of
the
three network models just described. This sequence is

ly
simplest model of an autonomous robot driving random
tri-
through a room with a square obstacle in the middle. Th

o
objective is to map this room using a neural network.

id-
a e
l-
Figures 2–4 show four phases in the adaptation of the st
dard GNG, the enhanced GNG (error triggered node gen
e
ation), and the ITM, respectively. The network paramete

t
are chosen so that each network arrives at the same nu

es
ber of nodes at 15000 samples; in this way the intermedia
phases can more easily be compared.
i

The ITM’s normalized root mean square error (NRMSE
stays almost constant during training. This comes from

immediately creating nodes to achieve a desired precisio
e
The slower error decay of the enhanced GNG originat

-
from the inertia introduced by the error accumulators an
the learning rate. The standard GNG is designed to slow

.
improve its mean error by adding nodes at regular interva

t-
c has
ts.
The edge creation and deletion algorithm’s performan
shows up when comparing the network’s graph to the D
and
launay triangulation. The edge aging mechanism of bo

’s
GNG models is responsible for the high number of surplu
edges, about ten to twenty percent, while the extremely str

l
immediate removal rule of the ITM lowers this number to a

v
most zero. The small advantage of the enhanced GNG o
l-
the standard version can be explained with the better op

ter
mization of node placement. Each newly placed node mak

er-
some existing edges obsolete, and since standard GNG n

-
creation frequency stays equally high throughout the expe

M
ment, the proportion of creating and deleting obsolete edg

ful
is less favorable.
e.
n
he

lly
-

, in
c-
s

-
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Figure 7: The graphs show measurements made on the three m
els discussed. The random walk stimulus pattern used can be s
in the figures 2–4, which show snapshots after 200, 1000, 50
and 15000 samples (dashed lines in the graphs above). Althou
it creates nodes more slowly than the enhanced GNG, the IT
achieves the desired error from the start because it can create
nodes outside the current scope of the network.
eThe number of edges missing to complete the Delaunay
angulation —the bottom graph in fig. 8— cannot drop t

zero in our experiment because of the obstacle in the m
n-dle of the imaginary room. Edge creation functions by th

er-same principle in all network models, so they perform a

rsmost equally well in this respect, with a slight disadvantag

m-for the ITM. This is because of the simple but very stric

teimmediate edge deletion technique used, which sometim
erases even valid Delaunay edges.
)
ts
n.

Conclusions
s
d

Statistical Distributions: Although we introduced and val-
idated the ITM network model on the basis of trajectory
lylike series of stimuli, the ITM still performs very well in
ls.settings with statistically uncorrelated stimulus distribution

In these settings, too, the ITM can outperform the other ne
ework models in terms of convergence speed, because it

e-no inner state variables that can introduce inertial effec

thEach adaptation step can produce and remove nodes

s edges immediately, with no dependency on the network

ictpast history.

-

er
ti-

Architecture Comparison: The ITM is in some respects
complementary to the SOM. While the SOM has rigid topo
esogy and relies on learning rate and smoothness parame

odeannealing to adjust the nodes’ positions and map the und

ri-lying topology, the ITM has rigid node positions and gen

eserates the topology with adaptation rules. While the SO
does not depend on changing topology to produce use
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Figure 8: Measurements to gauge the quality of the connectio
created by the three network models discussed. The performa
advantage of the ITM becomes apparent in the low number of e
cess edges which would carry no useful information for path fin
ing. The underlying experiment is the same as in figure 7.
he
s’

[3 -
mappings, but can benefit from such additions (as in t
GNG), the ITM does not depend on changing the node
he
positions, but can benefit from a small smoothness term (t

[4 .
former learning rate).
p- [5
One aspect of using the precision parameter,emax, instead
of a SOM-type learning rate, is that nodes are always a
le
proximately equally spaced. The ITM model is not suitab

to
for applications where the network’s node density needs

s
be a function of statistical stimulus density. This famou
p- [6 -
property of the GNG and the SOM is rooted in the ada

it
tation of the nearest node and its topological neighbors;
[7 g
cannot be replicated in the ITM.
- [8

Dimensionality of Input Data: Our experiment involves
two-dimensional input vectors for clarity of the presenta
ful
tion. In our tests, the ITM has performed equally success

[9
with higher intrinsic dimensionality of input data. With ris-
ing dimensionality, the ITM’s advantage in swiftly deleting

bil-
useless edges even grows, both in terms of mapping relia

ing[10 s.
ity and computing expense, because fewer stray emanat
edges per node mean shorter edge testing loops.
-
e-
Applications: The Instantaneous Topological Map pro
duces reliable charts of trajectories without the need for sp
he
cial preparation of input samples. There are no delays in t

s-
construction of the map. These factors make the ITM e

-
pecially useful in robotic control applications. A robot ex

an
ploring its surroundings can store the topological data in

.
ITM, which then works like an associative memory device
o-
The robot can then use the map literally to get from one l

he
cation, represented by one node, to another: following t
shortest path in the ITM’s graph leads it to the target, aut
matically avoiding obstacles.
Many control processes involve finding an effective way o
setting input values in order to reach a target output val

with minimum effort. Using an ITM to map the state spac

while a simple controller is operating can turn up a more e

ficient pathway leading to the target position. Nodes alon

that pathway correspond to a series of target settings for

controller. Feeding that series instead of the final target v

ues to the controller can lead to better overall performanc
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