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Gestalt-Based Action Segmentation for Robot
Task Learning

Michael Pardowitz∗, Robert Haschke∗, Jochen Steil† and Helge Ritter∗†

Abstract— In Programming by Demonstration (PbD) sys-
tems, the problem of task segmentation and task decomposition
has not been addressed with satisfactory attention. In this
article we propose a method relying on psychological gestalt
theories originally developed for visual perception and apply
it to the domain of action segmentation.

We propose a computational model for gestalt-based seg-
mentation called Competitive Layer Model (CLM). The CLM
relies on features mutually supporting or inhibiting each other
to form segments by competition. We analyze how gestalt laws
for actions can be learned from human demonstrations and
how they can be beneficial to the CLM segmentation method.
We validate our approach with two reported experiments on
action sequences and present the results obtained from those
experiments.

I. INTRODUCTION

Programming a humanoid robot to achieve an individual
task is a complex problem. One promising way to ease this
is to equip cognitive robots with task learning abilities,
that lets them learn a task from demonstrations of naive
(non-expert) users. This paradigm is widely known as Pro-
gramming by Demonstration (PbD) or Imitation Learning.
Although several systems for Programming by Demonstra-
tion have been proposed (see [1], [2] for overviews), the
problem of task segmentation has only received minor at-
tention. The decomposition of a task demonstration into its
constituting subtasks was tackled only in problem specific
ways and a general framework and methodology for task
decomposition is still missing.

In this paper, we propose a novel approach to tackle the
task decomposition problem: we extend the idea of percep-
tual grouping via gestalt rules from the domain of visual
patterns into the domain of spatio-temporal processes aris-
ing from actions. Gestalt theory was successfully applied
to the task of image segmentation in computer vision (see
section II for an overview) and some Gestalt rules (e.g.
such as ”common fate”) were already addressing the issue
of forming perceptual groups within temporally changing
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patterns. It thus seems natural to extend this line of thinking
more deeply into the realm of task decomposition and to
explore the power of Gestalt laws for characterizing good
action primitives for task decomposition. Such an approach
can connect the so far primarily perception-oriented Gestalt
approach with more current ideas on the pivotal role of the
action-perception loop for representing and decomposing
interactions.

While the original Gestalt approach relied heavily on
explicit, ”rule-like” characterizations of Gestalt principles
[3] the early Gestaltists were already keenly aware that
not everything that makes a good Gestalt is necessarily
expressible in a crisp, rule-like linguistic format. Subse-
quent approaches exploiting field-like concepts for imple-
menting Gestalt processes were reflecting this awareness.
Generalizing Gestalt processes from the purely visual into
the (inter-)action domain, we expect the significance of
such more implicit representations to become even stronger.
Therefore, we do not attempt to formulate any explicit
rule-like Gestalt principles and instead employ from the
outset a learning method for extracting implicit Gestalt
principles implemented as ”field-like” interactions that are
learnt within a layered neural network (CLM, cf. below)
from data.

The following section will review the literature on ac-
tion and image segmentation. After that, section III will
introduce the computational model for gestalt based action
segmentation used in the experiments in this paper. Section
IV describes a learning method to construct such models
from human demonstrations in a supervised learning setup.
Section V comments on the hardware setup and preprocess-
ing steps to experimentally validate our model, and section
VI reports the results obtained from these experiments.
Finally, we conclude this paper with a discussion and an
outlook on future work.

II. RELATED WORK

Robot task learning from human demonstration has
drawn increasing attention during the past decade.
Nonetheless, task segmentation has been tackled only im-
plicitly by most of the presented systems.

[4] applies hand-crafted rules to detect state transitions
from video sequences. Segments are characterised through
stable contact points between the objects recognized in
the scene. More formalized models use Hidden-Markov-
Models (HMMs) to segment walking or grasping actions
from motion-capture data [5]. [6] performs unsupervised
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clustering using Vector Quantisation (VQ) to segment the
basic actions (codes) for a discrete HMM. This method
is refined in [7] to Gaussian Mixture Models where each
Gaussian represents a single segment of a task demonstra-
tion. This GMM is then fed into a continuous HMM for
sequence learning.

A taxonomy of action primitives is presented in [8].
These primitives of action (mainly concerned with grasp-
ing) are learned in a supervised way which allows to
classify each frame of a task demonstration and to construct
task segments from those classifications. These segments
have been transformed into petri-nets for execution on a
humanoid robot [9]. A similar way is proposed in [10]
where a user demonstration is segmented based on the
most likely primitives performed in each timestep. [11]
applies a similar method using a winner-takes-all selection
of the most probable behavior to segment a sequence of
navigation tasks.

Several methods try to avoid the segmentation problem:
[12] lets the user define the segmentation with explicit
verbal commands that directly guide the robot through
a demonstration. [13] and [14] do not decompose a task
demonstration at all but search for direct mapping functions
between input and output trajectories.

In the domain of computer vision the segmentation prob-
lem has drawn continuous interest over several decades. In
particular, gestalt-based approaches accomplished complex
image segmentation tasks as reported in [15]. In this
domain one can coarsely divide direct probabilistic models
[16] from neural methods like in [17], [18].

III. THE COMPETITIVE LAYER MODEL

The Competitive Layer Model (CLM) consists of L
neuron layers. Each layer α = 1 . . . L acts as a ”feature
map” associating its positions t with feature value combi-
nations mt from the chosen feature space V . In our specific
application, t represents the point of time where a feature
vector mt was recorded. Figure 1 shows a simple example
of a CLM with L = 3 and N = 4: Four input feature
vectors are extracted from an input trajectory. A single
neuron represents that trajectory segment in each layer. The
neurons are connected laterally and columnarly. Identical
positions t in different layers share the same input line and
receive a (usually scalar) input activity ht. In the simplest
case we assume that the (prespecified) feature maps are
layer-independent (no α index) and are implemented in
a discretized form by N linear threshold neurons with
activities xt,α located at the same set of discrete positions
r in each layer α. Therefore, the system consists of L
identical feature maps that can be activated in parallel.

The idea of the CLM is to use this coding redundancy
to introduce a competitive dynamics between layers for the
coding of features in its input pattern ht. The outcome of
this competition partitions the features comprising the input
into disjoint groups, with each group being characterized
as one subset of features coded by activity in the same
”winning layer”.

Layer 1

Layer 2

Layer 3

Lateral Interactions (exciting or inhibiting) 
Columnar Interactions (competing, WTA)

Linear Threshold Neuron
Input Feature Vector

Input 
Trajectory
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Fig. 1. The Competitive Layer Model Architecture for an input
trajectory with L = 3, N = 4. The neurons are shown as black dots.
The solid and dotted lines represent lateral and columnar interactions
respectively. Lateral connections are labelled with their according weights
ftt′ . The input features m0 . . . m3, the neurons of layer 1 and the lateral
interactions for neuron 0 in layer 3 are labeled with the corresponding
notation

The competitive dynamics is based on two different sets
of connections between the neurons of the CLM. Two
timesteps t and t′ belong to the same segment if they show
simultaneous activities xtα > 0 and xt′α > 0 in a certain
layer α. In each layer, the neurons are fully connected with
symmetric weights ftt′ = ft′t. The values of ftt′ establish
semantic coherence of features. Positive values indicate
feature compatibility through excitatory connections while
negative values express incompatibility through inhibitory
connections. Two features t, t′ with high positive values for
ftt′ are more likely to belong to the same action segment
than two features with negative values forftt′ .

The purpose of the layered arrangement and the colum-
nar interactions in the CLM is to enforce a dynamical
assignment of the input features to layers that respects
the contextual information stored in the lateral interactions
ftt′ . This assignment segments the input into partitions of
matching features which links each feature t with its unique
label α(r). A columnar Winner-Takes-All (WTA) circuit
realizes this unique assignment using mutual symmetric
inhibitory interactions with strength J > 0 between neural
activations xtα and xtβ . Due to the WTA coupling, only
one neuron from a single layer can be active in every
column, as soon as a stable equilibrium state of the CLM
is reached.

Equation (1) combines the inputs with the lateral and
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columnar interactions into the CLM dynamics (see [18]):

ẋtα = −xtα + σ

J(ht −
∑

β

xtβ) +
∑
t′

ftt′xt′α

 . (1)

Here is σ(x) = max(0, x) and ht is the significance of the
detected feature t as obtained by some preprocessing steps.
For simplicity, we assume all ht to be equal to one in this
paper.

A process that updates the neural activations according
to the dynamics of equation (1) converges towards several
possible stable states, as shown in [18]. These stable states
all satisfy the consistency conditions∑

t′

ftt′xt′β ≤
∑
t′

ftt′xt′α̂(r), (2)

which indicate the assignment of a feature t to the layer
α̂(r) with the highest lateral support for that feature. This
corresponds to the layer that already contains the most
features t′ compatible with t. Since every column t has
only a single α̂(r), α̂ establishes a partitioning of features
into disjunctive sets of mutually compatible features, called
segments.

Compatibility of features is coded in the lateral in-
hibitory or excitatory weights ftt′ . The correct choice of the
lateral weights determines the quality of the partitioning.
The next section describes, how good lateral interactions
can be learned.

IV. DETERMINING THE LATERAL INTERACTIONS

In the last section, we used the compatibility function
ftt′ = f(mt,mt′) which quantifies the preference to bind
similar features with positive values and separate dissimilar
features by negative values. This section describes, how
the interactions can be learned from a labelled training
sequence.

Assuming that we have a consistent labelling α̂(r) for a
training sequence of length N (that is: t = 1, . . . , N ), we
can construct one attractor state by

ytα̂(r) = 1 and ytβ = 0 ∀t,∀β 6= α̂(t).

The objective is to learn ftt′ such that it satisfies the target
inequalities (2) for the ytβ :∑

t′

ftt′yt′β ≤
∑
t′

ftt′yt′α̂(r) (3)

As was shown in [18], these target inequalities are
estimated by a matrix F̂ = (f̂tt′), which is given by(

f̂tt′

)
= F̂ =

∑
γ

∑
µ6=γ

(yγ − yµ)(yγ − yµ)T . (4)

Here, the vectors yγ and yµ represent all components in
the γth and µth layer, that is yγ = (y1γ , . . . , yNγ)T .

So far, the discrete interaction matrix F̂ obtained by
(4) is defined only on the feature values present in the
training sequence. Therefore, we have to generalize it to

a real interaction function defined on the full feature do-
main. Several approaches for this generalization have been
discussed in [17], [18]. Here we follow the approach in
[18] to decompose the interaction function ftt′ into a linear
combination of a set of K symmetric basis interaction
functions gj

tt′ = gj(mt,mt′) which are defined on the
whole feature space such that

ftt′ =
K∑

j=1

cjg
j
tt′ .

A detailed analysis (see [18]) reveals that under the condi-
tion that the basis interactions are assumed to be binary
step functions (gj

tt′ ∈ {0, 1}) that describe a disjunct
partitioning of the feature space (gj

tt′g
i
tt′ = δij),

cj =
∑
t,t′

f̂tt′g
j
tt′ (5)

yields a practical estimate.
Following the conditions above, the choice of the basis

interaction functions gj
tt′ has to satisfy two constraints:

symmetry and disjunction partitioning. To satisfy the sym-
metry constraint we transform the feature space into a
generalized proximity space D = RP

dtt′ =
(
(mt1 −mt′1)2, . . . , (mtP −mt′P )2

)
with mti denoting the ith component of the feature vector
mt.

We then map each proximity vector dtt′ to a multidi-
mensional Voronoi map with K cells and a prototype d̃j

corresponding to each cell, such that each Voronoi cell is
defined as

Vj =
{

(mt,mt′)|∀i 6= j : ||dtt′ − d̃j || ≤ ||dtt′ − d̃i||
}

.

Since a Voronoi tesselation results in a disjunct partitioning,
a choice of

gj
tt′ =

{
1, (mt,mt′) ∈ Vj

0, (mt,mt′) /∈ Vj
(6)

satisfies all conditions to apply equation (5).
The representation of the basis functions as Voronoi

cells in the symmetric proximity space enables us to learn
interaction functions ftt′ from a relatively small data set
and achieve good generalization results. In order to obtain
the interaction functions for a new sequence, we have to
compute the proximity vector for each feature pair, search
for its nearest prototype vector d̃j and return the interaction
coefficient cj of this prototype.

Following [18], equation (5) can be rewritten as

cj =
∑

t,t′|α(t)=α(t′)

gj
tt′ − λ

∑
t,t′|α(t) 6=α(t′)

gj
tt′ .

Here, λ is a scaling factor that effects the grouping behavior
of the CLM: Higher values of λ result in higher values for
the interaction function, that is a higher attraction. This
eventually leads to fewer but larger groups. Lower values
of λ, in turn, result in a more fine-grained segmentation.
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(a) Sensors (b) Camera view (c) Frame #135 (d) Frame #172 (e) Frame #229

Fig. 2. Sensors and Key Frames. (a) Sensing devices: A Cyberglove for hand posture tracking together with a ARToolkit Marker mounted on the
back of the hand. (b) The marker and the object are tracked with an overhead camera. Marker and color blob tracking is performed. (c-e) Key frames
of recorded sequence. Visualization of hand and object positions and joint angles of the hand.
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Fig. 3. Extracted features. (a) f0, f1 (b) f2 – f4 (c) f5 – f7. See text for explanation.

V. EXPERIMENTAL SETUP AND PROCEDURE

In order to obtain data from human task demonstrations,
we used the following setup: An Immersion Cyberglove
[19] senses the finger joint angles in order to capture the
human hand posture and transmits them via a bluetooth
connection to a computer. An ARToolKit Marker1 was
fixed with elastic straps on the back of the hand (see figure
2a). A Sony DFW-VL500 Firewire camera with a resolu-
tion of 640x480 pixels tracked the scene from an overview
perspective (see figure 2b). This setting allowed us to
locate a person’s hand in 6D-space (from the ARTookKilt
Marker) together with its posture (from the Cyberglove
sensor readings) and estimate the actions the user performs.
Figure 2(a) shows this setup.

Equipped with the sensors described above, the user
faced an environment which contained various objects (i.e.
apples, bananas). To obtain information on the position and
movements, we used methods for tracking colored blobs
to record object movements in the same overhead camera
images that were used for the ARToolKit tracking. The
results are shown in figure 2(b).

Several sequences with lengths N varying between 350
and 400 have been recorded with this sensor setup. Three
frames from the sequence used for the experiments de-
scribed in section VI are displayed in figure 2 (c-e) as a 3D
reconstruction of the obtained data. The hand position and
posture together with the object positions yielded enough
information to extract the following features (see also figure
3):

1see http://artoolkit.sourceforge.net/

1) The sum of the joint angles of the human hand:

f0(t) =
∑

i

θi(t).

This gives a measure for the degree of open-
ing/closing of the hand.

2) The derivative of f0: f1(t) = ḟ0(t). This gives large
values at times when the user opens or closes a grip.

3) The velocities of the hand and the objects

f2(t) = |−→v hand(t)|, f3 = |−→v obj1(t)|, f4 = |−→v obj2(t)|.

The velocities tend to remain positive during con-
nected segments and disappear only at points where
the goal context of the user changes.

4) The co-occurrence of parallel movements is calcu-
lated using the scalar product of the movements of
the hand with an object or between the two objects
respectively:

f5(t) = −→v hand(t)T · −→v obj1(t)
f6(t) = −→v hand(t)T · −→v obj2(t)
f7(t) = −→v obj1(t)T · −→v obj2(t)

These features give large values for segments where
an object moves in the same direction as the hand,
or the objects move parallel to each other.

5) The frame number: f8(t) = t. This allows us to ex-
plicitly take into account the time dimension, which
leads to more continuous segments and not creating
too many unlinked fragments.

These features are computed for each frame of a demon-
stration sequence. The interactions are learned according



5

to the approach outlined in section IV. After that, two
different experiments are conducted:

1) Exploration of parameter space: During the training
phase and the execution of the CLM dynamics the
following parameters were systematically varied:
• Binary vs. continuous interactions: In the binary

experimental condition the interactions were
thresholded, that is interactions larger than 0.5
were set to 1 and interactions smaller than 0.5
were set to 0.

• The scale factor λ was systematically varied in
ten equally spaced intervals between the bounds

(c+)T c+

(c−)T c+
< λ <

(c+)T c−

(c−)T c−

which are suggested in [18].
• The number of prototypes K for the basis func-

tions to be learned was varied between 100 and
280 in steps of 20.

The aim of this experiment was to find a parameter
set that yields optimal classification accuracy.

2) Comparison with a standard classifier: Here the scale
factor λ and the number of prototypes K was fixed to
1.3 and 260, respectively, which was close to the op-
timum as found by the first experiment. Classification
accuracy was compared to a Feed-Forward Neural
Network with 9 hidden units that was trained with
Backpropagation using a learning rate ε = 0.2 and a
weight decay term of 0.005 for 10, 000 episodes. In a
first experimental condition, the classification rate of
the CLM and the Feed-Forward-Classifier was tested
on the same demonstration sequence that was used
for training. In a second condition it was tested on a
new sequence to assess the generalization capabilities
of the different classifiers.

After the interaction functions of the CLM are trained
with the methods outlined in section IV, the dynamics
of the CLM is executed (either on the training data or a
new sequence, depending on the experimental conditions)
according to the rules stated in section III. When the
dynamics have converged, the correct classification rate
is determined by comparison with labellings generated by
hand.

VI. RESULTS

Figure 4 shows the interactions as learned from the
training sequence. From the first visual impression one can
easily distinguish the interaction patterns for movements
with grasped objects (b), (c) and with empty hand (d). On
execution of the CLM dynamics, the assignment converges
from complete randomness towards a satisfying segmenta-
tion of the input sequence.

Considering the experiment designed to explore the
parameter space, figure 5 shows the resulting classification
rates plotted versus the parameter λ. Generally, one can
conclude that thresholded binary interactions (fig. 5 (b))
achieve better segmentation results even for a smaller

number of learned basis functions than the continuous
interaction case (fig. 5 (a)). This is apparently due to
the greater simplicity of binary functions, which can be
approximated more easily. The data plotted in figure 5
additionally suggests that a maximum of segmentation
accuracy can be found around a parameter set including a
scale factor λ = 1.3 and the number of function prototypes
K = 260. Therefore, λ and K were fixed to these values
during the second experiment.

The results from the second experiment are recorded
in tables I and II. Table I shows the classification rate
averaged over 30 training runs on the same data set.
The CLM with binary interactions clearly outperforms the
continuous CLM. Both the binary and the continuous CLM
perform better than the Neural Network trained by the
Backpropagation algorithm. This effect becomes even more
evident when we take into account the figures for the
generalization ability. Both CLMs show a much higher
tolerance to new data than the Backpropagation network.

µ σ

FFNN 0.563 0.214
CLM cont. 0.763 0.144
CLM bin. 0.840 0.011

TABLE I
EXPERIMENT II: COMPARISION OF CLASSIFICATION ACCURRACY ON

TRAINING DATA SET FOR DIFFERENT METHODS

µ σ

FFNN 0.457 0.172
CLM cont. 0.750 0.143
CLM bin. 0.801 0.148

TABLE II
EXPERIMENT II: COMPARISION OF GENERALIZATION ABILITY FOR

DIFFERENT METHODS: CLASSIFICATION ACCURACY FOR UNKNOWN

TEST DATA SET

VII. CONCLUSION AND FUTURE WORK

In this article we proposed a gestalt-based method for
task segmentation. It applied the CLM, previously found
well-suited for visual segmentation. We developed methods
for learning of the CLM parameters and validated them in
an object manipulation scenario.

Future work will focus on several different aspects: The
full strengths of the competitive layer model, as shown in
visual segmentation experiments, still have to be exploited.
A background/reject layer might prove useful to reject the
assignment to a certain segment in areas of ambiguity,
where information is sparse. Different layer classes with
different lateral interactions might be practical to segment
more complex actions, e.g. rotating a grasped object, un-
screwing a bottle or similar fine manipulations.

Moreover, each found segment has to be thoroughly
analysed and interpreted to facilitate further learning and
a final imitation of the demonstrated movements. Effects
and preconditions of actions and temporal sequences of
segments can yield important cues for an imitation learning
system that will be exploited in further research.
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(a) Manual (b) Int. #135 (c) Int. #172 (d) Int. #229 (e) Dyn. t = 1,000 (f) Dyn. t = 100,000 (g) Dyn. t = 200,000

Fig. 4. Interactions and Assignment. Each frame corresponds to a single pixel, with frame #0 in the lower left, and frame #400 in the upper right corner.
The first 20 frames form the lowest, the last 20 frames the highest row. (a) Manual segmentation. White segments correspond to hand movements
without an object being grasped. Black and grey segments correspond to movements with the banana or the apple in the hand, respectively. (b-d)
Interactions ftt′ as functions of pixel position t′ for different fixed choices of t. White pixels indicate a value of 1, black pixels a value of 0. (b)
r = 135: Banana grasped (c) r = 172: Apple grasped (d) r = 229: Movement without an object. (e-g) Execution of CLM-Dynamics (same color
coding scheme as for manual segmentation) (e) after 1, 000, (f) after 100, 000 iterations, (g) after 200, 000 iterations (converged result).
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(a) Continuous Interactions
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Fig. 5. Results of Experiment I: Exploration of Parameter Space. The values for λ and the resulting classification rates are plotted on the x- and
y-axis, respectively. The number of function prototypes was varied according to the color and dot code depicted in the legend (c).
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