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A. Introduction

For robots to transfer from structured laboratories to our
unstructured world, they need to be able to sense and respond
to environmental situations. In addition to other sensing
modalities, robots need full body tactile sensors (e.g. force
sensors) to understand the physical interactions that arise.
We refer to these full body tactile sensors as tactile skins.

While important, tactile skins are challenging to imple-
ment. It is believed that certain areas of the body should
have 1mm spatial resolution [1], which implies 1,000s to
1,000,000s of individual sensing elements, often called tax-
els, to cover an adult-sized humanoid robot. Additionally, for
real-time applications, such as force control, 1kHz response
is desired [1]. An obstacle to achieving these characteristics
is limited space for wiring, especially when the tactile
skin is designed independently from the robot. Furthermore,
the sensors are often noisy. There are also challenges in
processing the massive amounts of data generated from the
tactile skins for applications such as object classification.

We apply compressed sensing to tactile skins to help
address these challenges. Compressed sensing has been
applied with great success in image and video processing,
among other applications [2]. Our inspiration in applying
compressed sensing to tactile skins is that the signals from
the taxels resemble images on the skin.

B. Background

Compressed sensing compresses a signal (e.g., force read-
ings from a tactile array at particular time) during the acqui-
sition process [2] by generating measurements consisting of
linear combinations of the signal elements. Mathematically,
let x ∈ RN be our signal of interest; each measurement yi

yi = ai1x1 + · · ·+ aiNxN ,

where aij are measurement coefficients. The vector y ∈
RM is the compressed signal, which can be generated in
hardware. Provided the original signal is sparse in some
basis and the measurements are taken appropriately, x can
be efficiently recovered from O(logN) measurements. Fur-
thermore, techniques exist that can reduce measurement and
signal noise during recovery [2].
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Fig. 1. Example wiring schematics for a) compressed sensing aggregated
measurements on a 3×3 tactile grid and b) individual sensor measurements.

C. Data Acquisition Benefits

We have proposed an approach for data acquisition in
tactile skins using compressed sensing techniques [3]. Our
measurement coefficients are determined by the Scrambled
Block Hadamard Ensemble (SBHE) [4], which has been
successfully applied in image compression. We selected
SBHE because it separates signal elements into distinct mea-
surement groups. In tactile skins, this measurement approach
can reduce wiring, as shown in Fig. 1. This figure shows a
3×3 tactile array with (a) measurements collected from three
measurement groups compared with (b) individually wired
taxels.

In addition to the reduced wiring, our approach requires
fewer measurements than would be needed to sample each
taxel individually. With appropriate hardware design, this can
lead to a reduction in measurement acquisition time over full
signal acquisition via single taxel measurements. Finally, our
simulations have shown that it is possible to recover the full
tactile signal from the compressed signal with high accuracy.

We have evaluated our approach on a simulated 64× 64
taxel array using our tactile array simulator BubbleTouch
(https://github.com/bdhollis/BubbleTouch). For reconstruct-
ing the full signal from the compressed signal, we use the
Fast Iterative Soft-Thresholding Algorithm [5]. In prelimi-
nary work, we have achieved quality reconstructions at 50hz
on a commodity computer [3]. Fig. 2 shows an example
reconstructed signal from N/3 compressed measurements
(right), the signal of noisy taxel readings that was sampled
and compressed (center), and the ground truth signal with
no sensor noise (left). Fig. 3 further shows the quality
of the reconstruction by showing the peak signal to noise
ratio (PSNR) for the reconstructed signals from various
compression levels, as well as the PSNR for the noisy signal
for comparison. Note that larger PSNR is better as it means
less noise. In general, the reconstructed signals have similar
or better PSNR than the noisy sampled signal.



Fig. 2. Taxel values from a 64×64 tactile array (4096 taxels) for the ground truth signal (left), noisy signal (middle) and the reconstructed signal (right).
The reconstruction was from 1365 measurements.

Fig. 3. Representative time sequences of PSNR of the reconstructed signal
for the different numbers of measurements (N
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as well as the PSNR of the noisy signal.

D. Tactile Object Classification

Compressed sensing techniques have also been applied to
classification tasks, an approach called compressed learning.
It has been shown that it is possible to perform classification
on the compressed signals with accuracy nearly that of
classification using the original signals [6]. Utilizing the
compressed signals directly reduces the dimension of each
data point, thus reducing the processing time and resources
needed for classification.

In recent work, we have explored the application of com-
pressed learning to object classification in tactile skins [7].
As in our work with compressed sensing for data acquisition,
compressed signals are generated by contact between the
tactile array and various objects. We use compressed signals
from single snapshots in time of individual objects to train
a Directed Acyclic Graph Support Vector Machine (DAG-
SVM). The DAG-SVM can then be used to classify an object
based on a single time instance of contact with that object.

We have evaluated our method using BubbleTouch on 16
household objects. Fig. 4 shows the classification accuracy
using various levels of compression. As a point of compari-
son, we also perform classification using the full raw signals
from tactile arrays that have the same number of taxels
as the number of measurements of the compressed signals.
The results show our method achieves high classification
accuracy, even with compression factors up to 64 and training

Fig. 4. The classification accuracy for various signal sizes using two
training set sizes. For the raw signals, signal size refers to the number of
taxels in the array, and for the compressed signals, signal size refers to the
number of measurements.

data percentage as low as 3%. The figure also shows that
a compressed learning approach performs better than lower
resolution taxel arrays.

E. Future Work

We are investigating techniques to support higher com-
pression and faster reconstruction, as well as other efficient
in-hardware measurement approaches. We are also exploring
additional applications that directly exploit the compressed
signals. Finally, we are developing a hardware prototype of
our compressed sensing-based tactile array.
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