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● Success Stories of Deep Learning

● Motivation for Deep Architectures

● Ingredients of Deep Learning
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Success Stories of Deep Learning

● Vision (ImageNet competition)

– 1.3 million images, 1000 classes

– top 5 error of ~5% 
(matches human performance)

● Natural Language Processing (Siri, ...)

● Word Embeddings

● Text Processing

– Automatic Translation
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ImageNet Examples
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Word Embeddings for Language Processing

● represent words by vectors

● learned from word co-occurence in large text-corpora

● semantics encoded in the (linear) topology of the space
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Fusing Vision and Speech

● instead of softmax layer, feed output to RNN

● RNN trained on human description of images

Vinyals et al. 2014 Show and Tell: A Neural Image Caption Generator
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Limitations of Neural Networks

● confidence >99.6%

● generated with Genetic Algorithms

Nguyen et al. 2014 Deep Neural Networks are Easily Fooled: 
High Confidence Predictions for Unrecognizable Images
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Deep Learning History

● 1958 Perceptron (Rosenblatt)

● 1980 Neocognitron (Fukushima)

● 1982 Hopfield network, SOM (Kohonen)

● 1985 Boltzmann machines (Ackley et al)

● 1986 MLP + backpropagation (Rumelhart)

● 1988 RBF networks (Broomhead + Lowe)

● 1989 Autoencoders (Baldi + Hornik)

● 1989 Convolutional Network (LeCun)

● 1993 Sparse Coding (Field)

● 2000s Sparse, Probabilistic, and Layer-wise models (Hinton, Bengio, Ng)

● 2012 DL clearly won ImageNet competition (Krizhevsky et al.)

Rosenblatt’s Perceptron
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Why Now?

● Big Data

– ImageNet et al: millions of labeled images
(crowd-sourced)

● Computing Power – GPUs

– terabytes/s memory bandwidth

– teraflops compute

● Improved Methods

– efficient + numerically robust learning frameworks

– new optimization methods



Center of Excellence Cognitive Interaction Technology

How are these amazing results achieved?
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Neural Networks

● simple units layered in a network structure

● weighted sum of inputs: 

● nonlinear activation: 
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Neural Network Learning

● learning by backpropagation of errors

● layered structure + chain rule = backpropagation
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Distributed Representation

● prototype-based representation needs many examples

prototype-based learning perceptron half-spaces
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Distributed Representation

● prototype-based representation needs many examples

● composition of features is exponentially more efficient

Consider a network whose hidden units represent the features:
● person is male / female
● person is young / old
● person wears glasses
● person has beard

Given n features and each feature requires O(k) parameters, 
need O(nk) examples.
Prototype-based methods would require O(kn) examples.
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Distributed Representation

● prototype-based representation needs many examples

● composition of features is exponentially more efficient

● prior assumption: 
compositionality is useful to describe real-world

● exploit underlying structure of the world
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Backpropagation Doesn't Scale to Deep  Nets

Deep nets perform worse than shallow nets
when trained with randomly-initialized backpropagation.

Bengio et al., NIPS 2007

training validation test

shallow net
random initialization

0.004% 1.8% 1.9%

deep net
random initialization 0.004% 2.1% 2.4%

deep net
unsupervised pre-training

0% 1.4% 1.4%
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Why going deep?

● one hidden layer of

– neurons

– RBF units

– logic units

is a universal approximator

● stacking multiple hidden layers 
is more efficient than a single one
Montufar et al, NIPS 2014

● hierarchy allows for 
more complex features
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Recognizing numbers (Google Street View)

[graph credit Goodfellow, 2014]
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Deep models make better use of more params

[graph credit Goodfellow, 2014]
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Increase of Depth in ImageNet Classification

[graph credit K. He]

❏ dog
❏ car
❏ horse
❏ bike
❏ cat
❏ bottle
❏ person
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Hierarchy of ML

● Neural Nets learn
features

● Deep Learning
learns a hierarchy
of features

Fig. I Goodfellow
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Issues with Backpropagation

● vanishing gradient
gradient is diluted from layer to layer due to factor 

● learning gets stuck
especially if started far from good regions
(random initialization)

● huge number of parameters (connection weights)
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Convolutional Networks

● features in natural images are translation-invariant
features useful in one region are useful anywhere else

● motivates use of filter-bank of convolutions

● pooling: aggregate (similar) results over an image region

2x2 pooling, stride 2

Max pooling

Average pooling

10x10 pooling, stride 10
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Convolutional Networks

● features in natural images are translation-invariant
features useful in one region are useful anywhere else

● motivates use of filter-bank of convolutions

– small filter-kernel

– re-use filter-kernel (weight sharing)

– dramatic reduction of weights

● pooling: aggregate (similar) results over an image region

– reduce dimensionality of representation

– operations: mean, max, median, …

– overlapping or non-overlapping (stride vs. window size)
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Convolution

32

input
filter
bias
output

3x32x32
3x5x5

1
1

feature map

1x28x28

convolve (slide) over 
all spatial locations

Convolving the filter with the input gives a feature map.

[figure adapted from A. Karpathy]
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Convolution

32

feature maps

[figure adapted from A. Karpathy]

Convolution Layer
computes multiple feature maps

Convolving the filter with the input gives a feature map.

input
filter
bias
output

3x32x32
6x3x5x5

6
6x28x28

filter parameters: 6 * 3*52 = 450
fully-conn. Params: 3*322 * 6*282 = 14M
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Convolution Filters provide Rich Feature Maps

● 1st layer filters learned by AlexNet (ILSVRC‘12)

– 96 filters of size 11x11x3

– filters for oriented + colored edges

– resembles Gabor filters
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Convolution Filters provide Rich Feature Maps

● Filters learned by Zeiler+Fergus  (ILSVRC‘13)

● deeper layers exhibit more complex features
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Convolutional Networks: Ingredients

● exploit spatial structure in input

● Normalization: average removal, variance normalization

● Filter bank: projection on overcomplete feature basis

● Non-Linearity: sparsification, saturation, lateral inhibition

● Pooling: aggregation over space or feature type

● deep convolutional networks: stack convolutional layers

norm
filter
bank

pooling
non-

linearity
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Convnet Computation: 2012 & 2014

FC 1000

FC 4096 / ReLU

FC 4096 / ReLU

Max Pool 3x3s2 

Conv 3x3s1, 256 / ReLU

Conv 3x3s1, 384 / ReLU

Conv 3x3s1, 384 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 5x5s1, 256 / ReLU

Max Pool 3x3s2 

Local Response Norm

Conv 11x11s4, 96 / ReLU

4M

16M

37M

442K

1.3M

884K

307K

35K

4M

16M

37M

74M

112M

149M

223M

105M

params FLOPsAlexNet (2012)

AlexNet (ILSVRC12)

● 3x227x227 input image

● 60M parameters

● 725 MFLOPS

● < 1ms / image on Titan X

GoogleNet (ILSVRC14)

● 1.4 GFLOPs (200%)

● 5M parameters (10%)

● 14% more accurate

Architecture matters!
Computational primitives are the same.
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GoogLeNet (2014)

● composition of multi-scale dimension-reduced
“Inception” modules

● no FC layers

● only 5 million parameters
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1x1 Convolution

each filter has size
64x1x1 and does a
64-dim dot product

64x1x1 convolution
with 32 filters

[figure credit A. Karpathy]

● compute pixel-specific combination of layer activities

● reduce channel dimension

● stack with non-linearity for deeper net

● found in many of the latest nets
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Ingredients for Successful Deep Learning

● powerful priors to reduce number of parameters

– deep hierarchies

– Convolutional Networks

● layer-wise training

● boosting gradient descent

● computing power

– simple non-linearity

– highly-parallel processing (GPU)

● Big Data
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● defeat vanishing gradient problem

● train network layer-wise using classical auto-encoder
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Layer-wise training: AutoEncoder

● defeat vanishing gradient problem

● train network layer-wise using classical auto-encoder

x
1

x
2

x
3

a
1

a
2

ŷ
1

ŷ
2

ŷ
3

● network trained
to predict input

● ŷ(x) ≈ x
● trivial solution unless:

● constrain #hidden units
● constrain sparsity of 

hidden units
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Layer-wise training: AutoEncoder

● defeat vanishing gradient problem

● train network layer-wise using classical auto-encoder

x
1

x
2

x
3

a
1

a
2

ŷ
1

ŷ
2

ŷ
3

● drop output layer
● consider hidden layer

as new, dimension-
reduced representation 
of input
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Layer-wise training: AutoEncoder

● defeat vanishing gradient problem

● train network layer-wise using classical auto-encoder
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Layer-wise training: AutoEncoder

● defeat vanishing gradient problem

● train network layer-wise using classical auto-encoder

● final supervised training to task
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Denoising AutoEncoder

● stochastically corrupt input

● task: reconstruct original input

–

– random dropout with probability p:

– Gaussian white noise: 
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Denoising AutoEncoder

● stochastically corrupt input

● task: reconstruct original input

● learns vector field
pointing towards
data distribution manifold

● better generalization
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Ingredients for Successful Deep Learning

● powerful priors to reduce number of parameters

– deep hierarchies

– Convolutional Networks

● layer-wise training

● boosting gradient descent

● computing power

– simple non-linearity

– highly-parallel processing (GPU)

● Big Data



Center of Excellence Cognitive Interaction Technology

Boosting Gradient Descent

● Batching

● Momentum

● Learning Rate adaptation
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Gradient Descent
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● batch gradient:

– slow (full sweep over data required)

– accurate
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Gradient Descent

●

● batch gradient:

– slow (full sweep over data required)

– accurate

● stochastic gradient:

– fast progress 

– fluctuates near minima / saddles

– can escape from local minima
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Mini-Batching

● combine the best of both worlds:
average over small batch sizes

● fast convergence + reduced fluctuations

● assumes homogenous batches (e.g. randomly drawn)

● efficient on GPUs:
parallel processing of several samples simultaneously

● reshuffle batches between epochs!



Center of Excellence Cognitive Interaction Technology

Classical Momentum
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Classical Momentum

● gradient oscillates when navigating ravines

●

● add discounted average gradient

●

● speed-up by factor
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Nesterov-Momentum

● invert order of momentum & gradient computation

● first jump to new location (due to momentum)

● and then compute corrective gradient
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Nesterov-Momentum

● invert order of momentum & gradient computation

● first jump to new location (due to momentum)

● and then compute corrective gradient

● It‘s better to correct a mistake after you have made it.
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Learning Rate Adaptation

● gradient defines direction

● optimal step size depends on curvature

● adapt 

Figs. from DL-tutorial @ NIPS2015
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Resilient Backpropagation (RPROP)

● use individual learning rates

● monitor direction (sign) of gradient

– same sign: increase learning rate

– sign change: decrease rate

● use      directly as step size

● tends to overfitting

Riedmiller, Braun ICANN 1993
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ADAGRAD

● automatically tune down learning rate
based on learning history

●

● denominator grows with past update steps

● effective learning rate tends to zero

➔ learning stagnates
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ADADELTA

● average gradient updates across finite window
using sliding average:

●

● correct units: nominator = average of weight updates
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Adaptive Moment Estimation (ADAM)

● integrate momentum:
sliding average of 1st and 2nd moments

●
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Adaptive Moment Estimation (ADAM)

● integrate momentum:
sliding average of 1st and 2nd moments

●

●

● biased towards zero (due to initialization)
bias correction:

●  
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Comparison of Optimizers

Fig. Sebastian Ruder
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Ingredients for Successful Deep Learning

● powerful priors to reduce number of parameters

– deep hierarchies

– Convolutional Networks

● layer-wise training

● boosting gradient descent

● computing power

– simple non-linearity

– highly-parallel processing (GPU)

● Big Data
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Rectified Linear Unit

● Softplus:

● ReLu:

● suitable to model
real numbers

● max induces sparsity
in hidden units

● no vanishing gradient
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Highly Parallel Processing with GPUs

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

Peak 
GFlops

NVIDIA GPU

US$ 250

2003           2004          2005         2006            2007                 2008

Intel CPU
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Ingredients for Successful Deep Learning

● powerful priors to reduce number of parameters

– deep hierarchies

– Convolutional Networks

● layer-wise training

● boosting gradient descent

● computing power

– simple non-linearity

– highly-parallel processing (GPU)

● Big Data
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Big Data

● many model parameters (weights)
require many training examples
to avoid overfitting

● ImageNet: 1.3 million images

● unsupervised pre-training possible
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