

Deep Learning for Incipient Slip Detection

Robert Haschke

Center of Excellence Cognitive Interaction Technology (CITEC)

EC

Overview

- Success Stories of Deep Learning
- Motivation for Deep Architectures
- Ingredients of Deep Learning

- Vision (ImageNet competition)
 - 1.3 million images, 1000 classes
 - top 5 error of ~5%
 (matches human performance)

- Vision (ImageNet competition)
 - 1.3 million images, 1000 classes
 - top 5 error of ~5%
 (matches human performance)
- Natural Language Processing (Siri, ...)

- Vision (ImageNet competition)
 - 1.3 million images, 1000 classes
 - top 5 error of ~5%
 (matches human performance)
- Natural Language Processing (Siri, ...)
- Word Embeddings

- Vision (ImageNet competition)
 - 1.3 million images, 1000 classes
 - top 5 error of ~5%
 (matches human performance)
- Natural Language Processing (Siri, ...)
- Word Embeddings
- Text Processing
 - Automatic Translation

ImageNet Examples

shrimp car mirror mite barracouta

CITEC

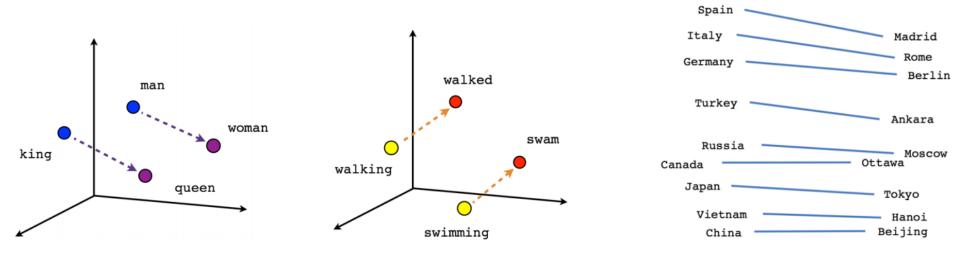
shrimp	car mirror	mite	barracouta
shrimp	car mirror	mite	barracouta
mashed potato	golfcart	black widow	rainbow trout
king crab	jeep	cockroach	gar
cauliflower	minivan	tick	sturgeon
kidney bean	gas pump	starfish	coho
grille	night snake	basenji	leopard
convertible	hognose snake	basenji	leopard
grille	night snake	boxer	jaguar
pickup	horned viper	corgi	cheetah
beach wagon	spiny lobster	Saint Bernard	snow leopard
fire engine	loggerhead	Chihuahua	Egyptian cat

Word Embeddings for Language Processing

- represent words by vectors $\in \mathbb{R}^n$
- learned from word co-occurence in large text-corpora $w_{-2}, w_{-1}, \pmb{w_*}, w_1, w_2$

Word Embeddings for Language Processing

- represent words by vectors $\in \mathbb{R}^n$
- learned from word co-occurence in large text-corpora $w_{-2}, w_{-1}, \pmb{w_*}, w_1, w_2$
- semantics encoded in the (linear) topology of the space



Male-Female

Verb tense

Country-Capital

Fusing Vision and Speech

- instead of softmax layer, feed output to RNN
- RNN trained on human description of images

Two hockey players are A red motorcycle parked on the fighting over the puck.

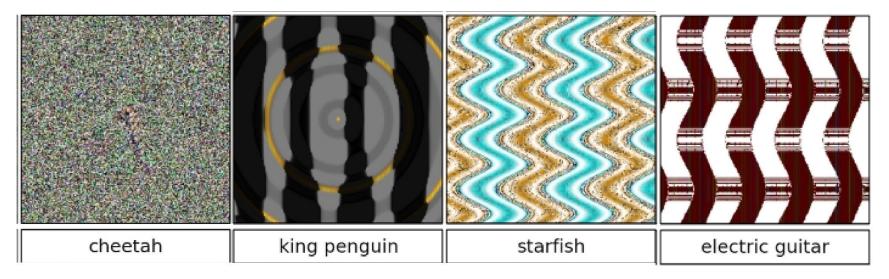
side of the road.

food and drinks.

Vinyals et al. 2014 Show and Tell: A Neural Image Caption Generator

Limitations of Neural Networks

- confidence >99.6%
- generated with Genetic Algorithms



CITEC

Nguyen et al. 2014 *Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images*

Deep Learning History

- 1958 Perceptron (Rosenblatt)
- 1980 Neocognitron (Fukushima)
- 1982 Hopfield network, SOM (Kohonen)
- 1985 Boltzmann machines (Ackley et al)
- 1986 MLP + backpropagation (Rumelhart)
- 1988 RBF networks (Broomhead + Lowe)
- 1989 Autoencoders (Baldi + Hornik)
- 1989 Convolutional Network (LeCun)
- 1993 Sparse Coding (Field)

CITEC

Rosenblatt's Perceptron

- 2000s Sparse, Probabilistic, and Layer-wise models (Hinton, Bengio, Ng)
- 2012 DL clearly won ImageNet competition (Krizhevsky et al.)

Why Now?

- Big Data
 - ImageNet et al: millions of labeled images (crowd-sourced)
- Computing Power GPUs
 - terabytes/s memory bandwidth
 - teraflops compute
- Improved Methods
 - efficient + numerically robust learning frameworks
 - new optimization methods

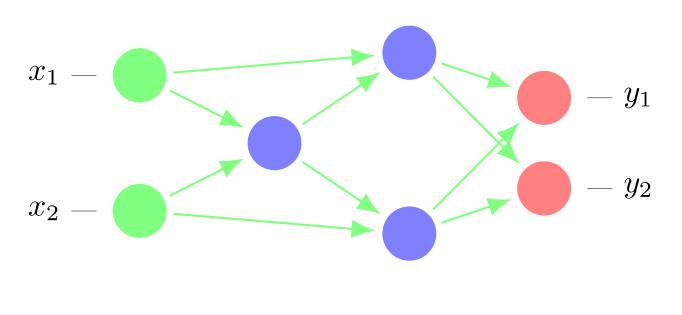
How are these amazing results achieved?

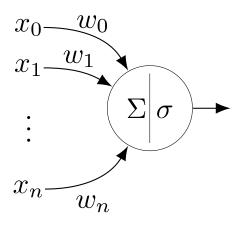
EC

CI

Neural Networks

- simple units layered in a network structure
- weighted sum of inputs: $h = \sum w_i x_i$
- nonlinear activation: $y = \sigma(h)$



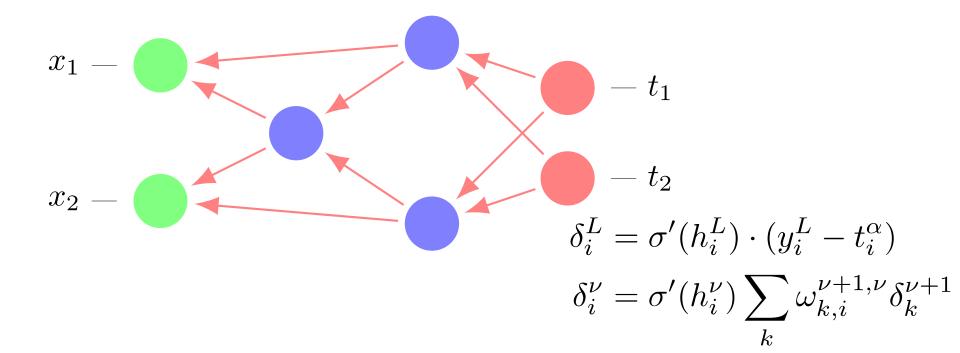


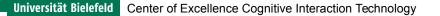
1 🛪

C

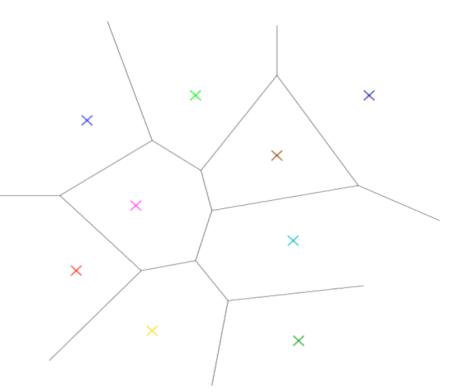
Neural Network Learning

- learning by backpropagation of errors δ_i^{ν}
- layered structure + chain rule = backpropagation

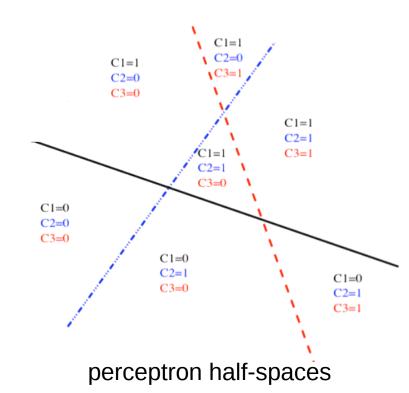




prototype-based representation needs many examples



prototype-based learning



- prototype-based representation needs many examples
- *composition* of features is exponentially more efficient

- prototype-based representation needs many examples
- *composition* of features is exponentially more efficient

Consider a network whose hidden units represent the features:

- person is male / female
- person is young / old
- person wears glasses
- person has beard

- prototype-based representation needs many examples
- *composition* of features is exponentially more efficient

Consider a network whose hidden units represent the features:

- person is male / female
- person is young / old
- person wears glasses
- person has beard

Given n features and each feature requires O(k) parameters, need O(nk) examples.

Prototype-based methods would require $O(k^n)$ examples.

- prototype-based representation needs many examples
- *composition* of features is exponentially more efficient
- prior assumption: compositionality is useful to describe real-world
- exploit underlying structure of the world

Backpropagation Doesn't Scale to Deep Nets

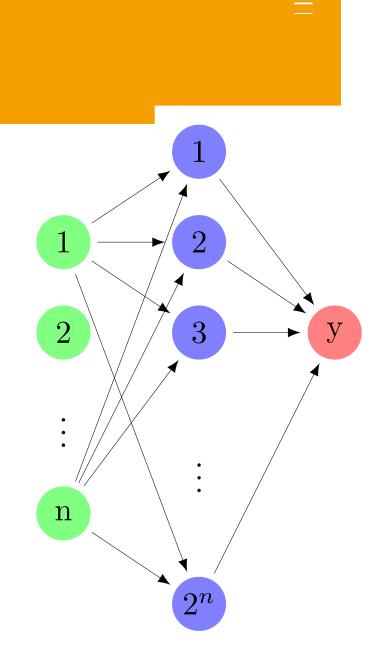
Deep nets perform *worse* than shallow nets when trained with randomly-initialized backpropagation.

	training	validation	test
shallow net random initialization	0.004%	1.8%	1.9%
deep net random initialization	0.004%	2.1%	2.4%
deep net unsupervised pre-training	0%	1.4%	1.4%

Bengio et al., NIPS 2007

Why going deep?

- one hidden layer of
 - neurons
 - RBF units
 - logic units
 - is a universal approximator



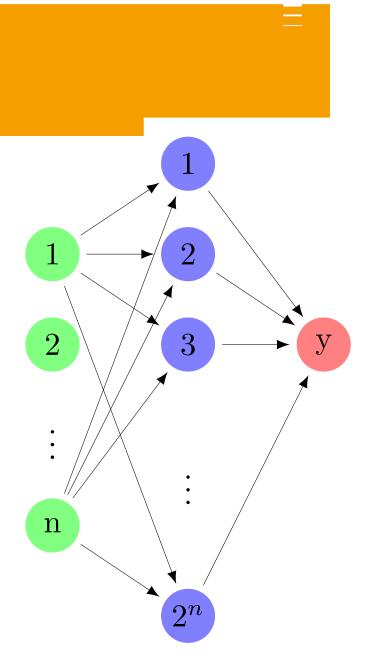
CITEC

Why going deep?

- one hidden layer of
 - neurons
 - RBF units
 - logic units

is a universal approximator

• stacking multiple hidden layers is more efficient than a single one Montufar et al, NIPS 2014



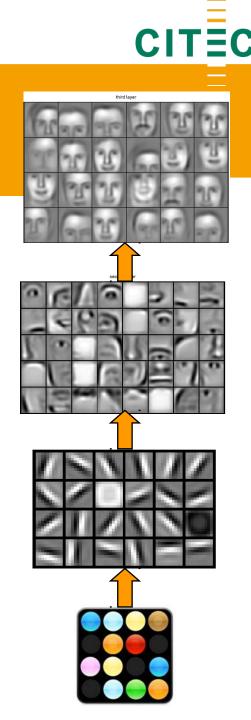
CI

Why going deep?

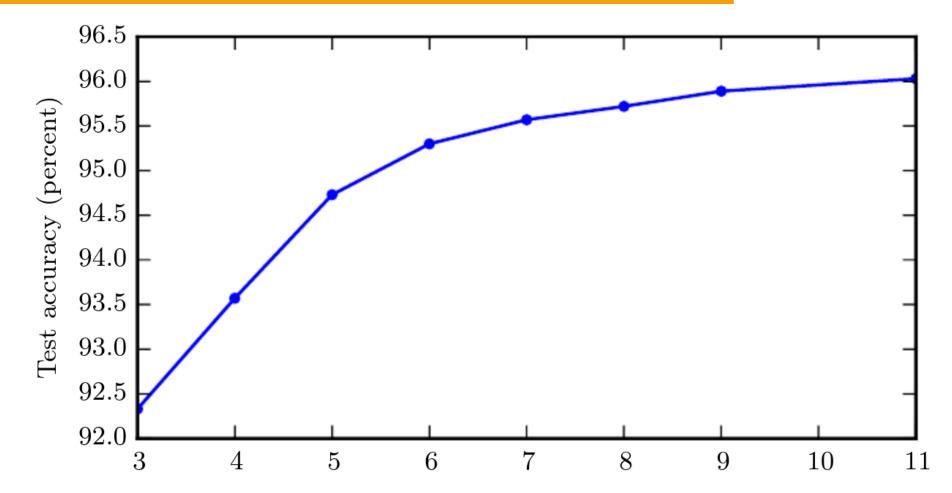
- one hidden layer of
 - neurons
 - RBF units
 - logic units

is a universal approximator

- stacking multiple hidden layers is more efficient than a single one Montufar et al, NIPS 2014
- hierarchy allows for more complex features



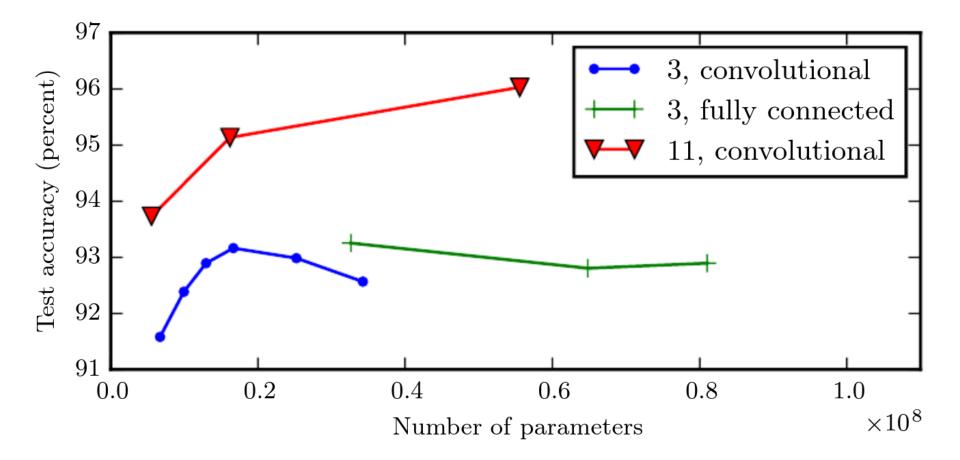
Recognizing numbers (Google Street View)



[[]graph credit Goodfellow, 2014]

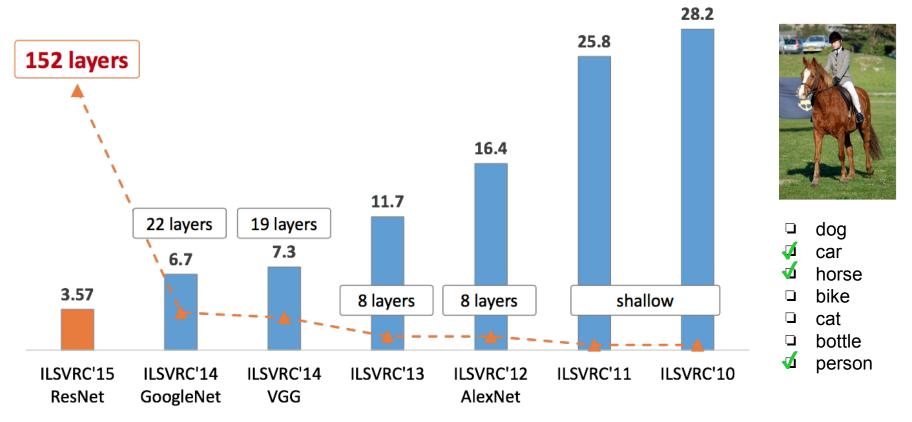
ology

Deep models make better use of more params



[graph credit Goodfellow, 2014]

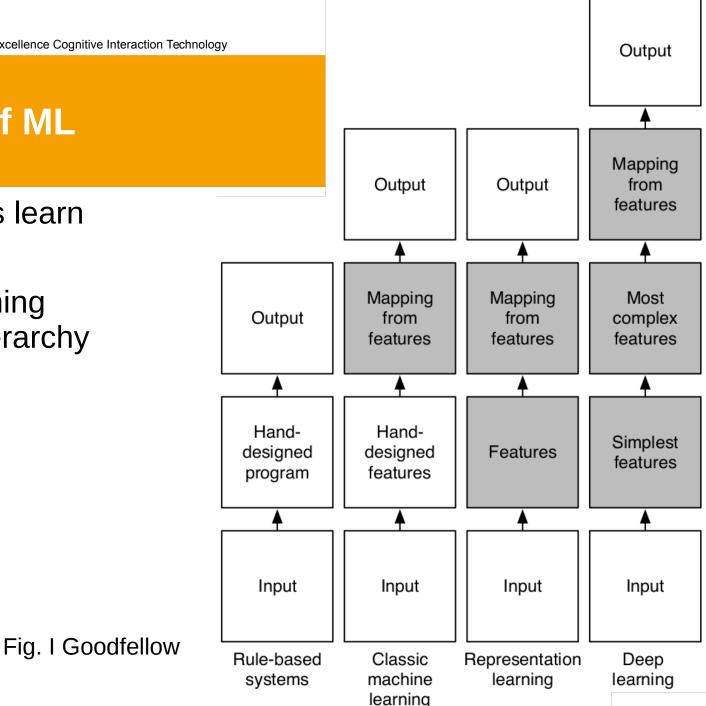
Increase of Depth in ImageNet Classification



ImageNet Classification top-5 error (%)

Hierarchy of ML

- Neural Nets learn • features
- Deep Learning learns a hierarchy of features



Issues with Backpropagation

- vanishing gradient gradient is diluted from layer to layer due to factor $\ \sigma' < 0$
- learning gets stuck especially if started far from good regions (random initialization)
- huge number of parameters (connection weights)

- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks

- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training

- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training
- boosting gradient descent

- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training
- boosting gradient descent
- computing power
 - simple non-linearity
 - highly-parallel processing (GPU)

Ingredients for Successful Deep Learning

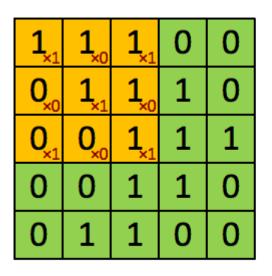
- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training
- boosting gradient descent
- computing power
 - simple non-linearity
 - highly-parallel processing (GPU)
- Big Data

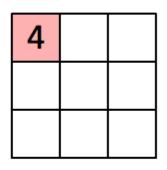
Ingredients for Successful Deep Learning

- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training
- boosting gradient descent
- computing power
 - simple non-linearity
 - highly-parallel processing (GPU)
- Big Data

Convolutional Networks

- features in *natural images* are translation-invariant features useful in one region are useful anywhere else
- motivates use of filter-bank of convolutions





Image

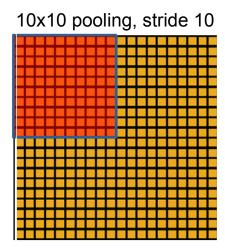
Convolved Feature

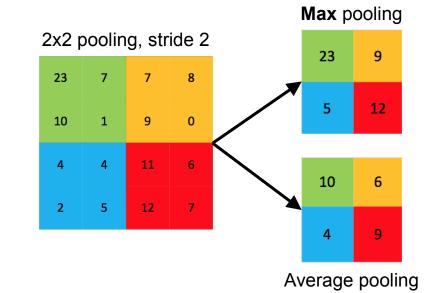
Convolutional Networks

- features in natural images are translation-invariant features useful in one region are useful anywhere else
- motivates use of filter-bank of convolutions

1

• pooling: aggregate (similar) results over an image region



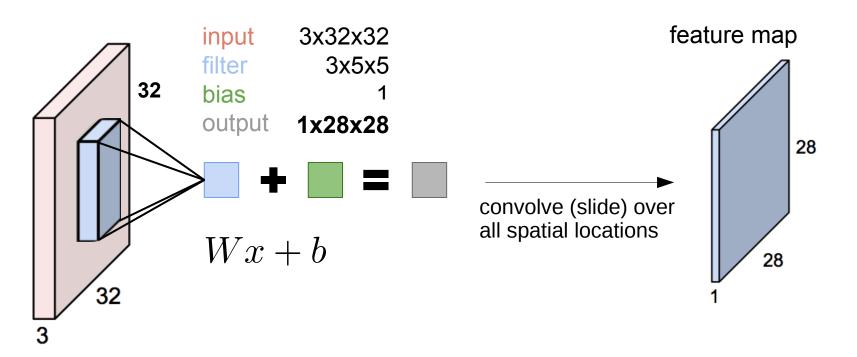


Convolutional Networks

- features in natural images are translation-invariant features useful in one region are useful anywhere else
- motivates use of filter-bank of convolutions
 - small filter-kernel
 - re-use filter-kernel (weight sharing)
 - dramatic reduction of weights
- pooling: aggregate (similar) results over an image region
 - reduce dimensionality of representation
 - operations: mean, max, median, ...
 - overlapping or non-overlapping (stride vs. window size)

Convolution

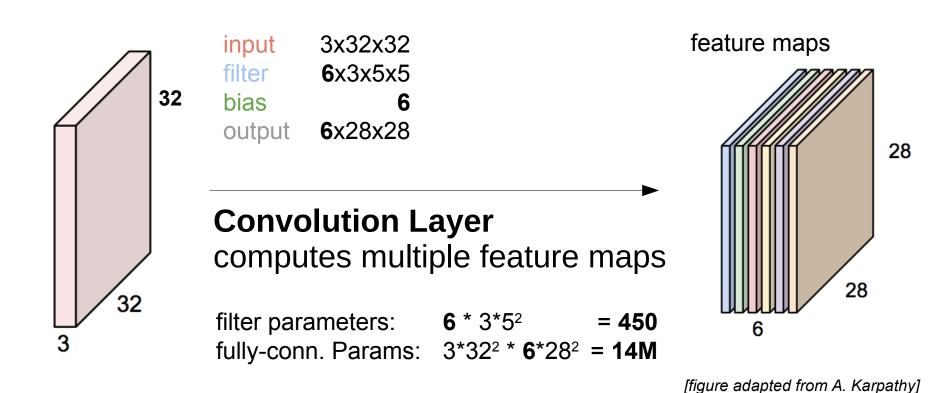
Convolving the filter with the input gives a feature map.



[figure adapted from A. Karpathy]

Convolution

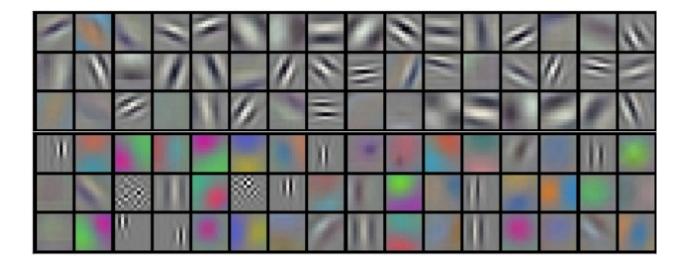
Convolving the filter with the input gives a feature map.



Convolution Filters provide Rich Feature Maps

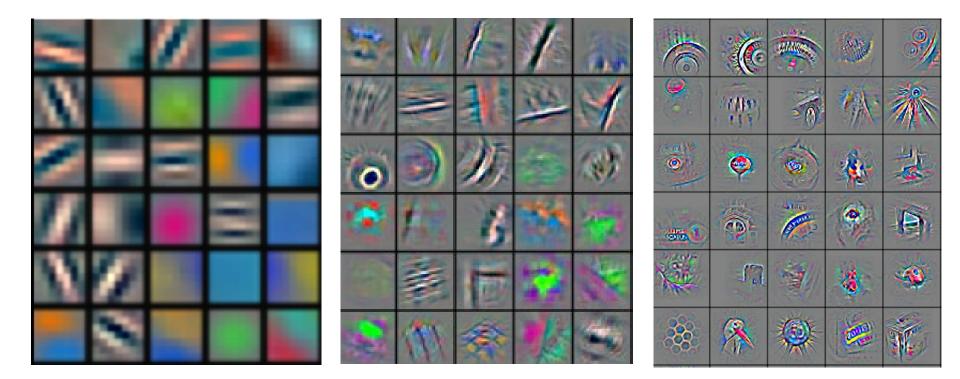
CI

- 1st layer filters learned by AlexNet (ILSVRC'12)
 - 96 filters of size 11x11x3
 - filters for oriented + colored edges
 - resembles Gabor filters



CITEC

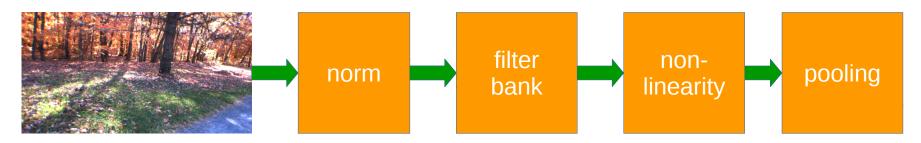
- Filters learned by Zeiler+Fergus (ILSVRC'13)
- deeper layers exhibit more complex features



сітіс

Convolutional Networks: Ingredients

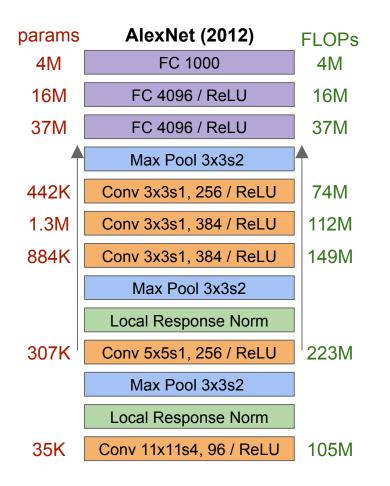
• exploit *spatial structure* in input



- Normalization: average removal, variance normalization
- Filter bank: projection on overcomplete feature basis
- Non-Linearity: sparsification, saturation, lateral inhibition
- Pooling: aggregation over space or feature type
- deep convolutional networks: stack convolutional layers

CITEC

Convnet Computation: 2012 & 2014



AlexNet (ILSVRC12)

- 3x227x227 input image
- 60M parameters
- 725 MFLOPS
- < 1ms / image on Titan X

GoogleNet (ILSVRC14)

- 1.4 GFLOPs (200%)
- 5M parameters (10%)
- 14% more accurate

Architecture matters! Computational primitives are the same.

 composition of multi-scale dimension-reduced "Inception" modules CITEC

Filter concatenation

3x3 convolutions

1x1 convolutions

Previous laver

1x1 convolutions

5x5 convolutions

1x1 convolutions

1x1 convolutions

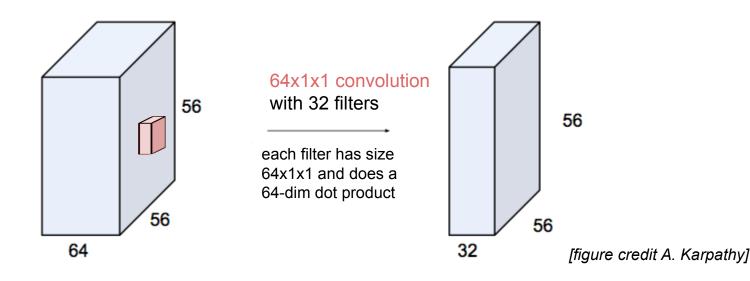
3x3 max pooling

• no FC layers

only 5 million parameters

1x1 Convolution

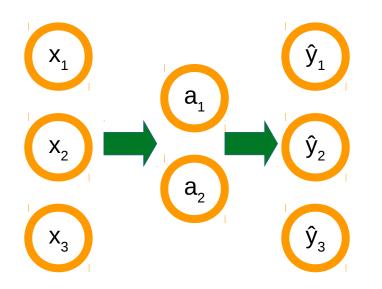
- compute pixel-specific combination of layer activities
- reduce channel dimension
- stack with non-linearity for deeper net
- found in many of the latest nets



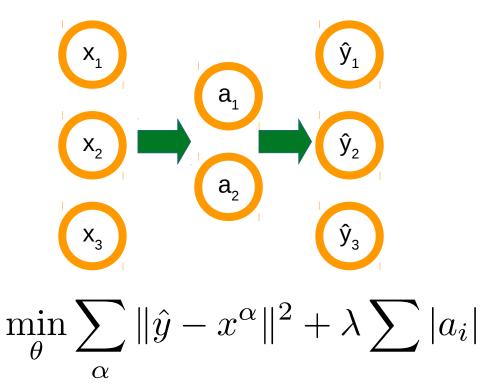
Ingredients for Successful Deep Learning

- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training
- boosting gradient descent
- computing power
 - simple non-linearity
 - highly-parallel processing (GPU)
- Big Data

- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder

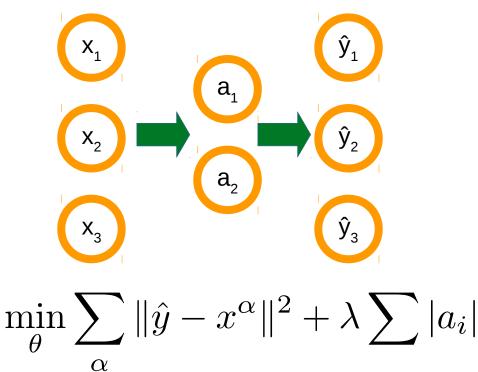


- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



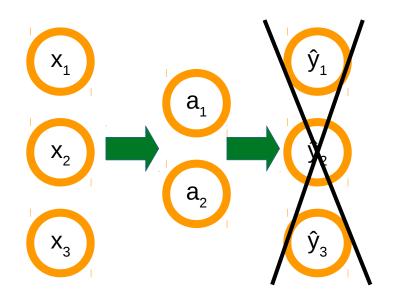
 network trained to predict input

- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



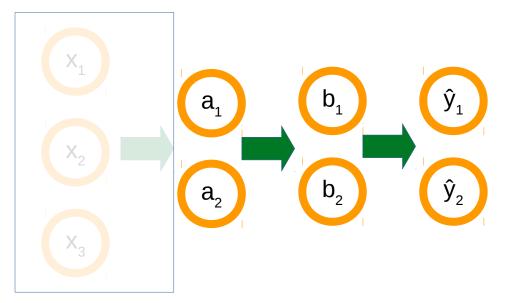
- network trained to predict input
- trivial solution unless:
 - constrain #hidden units
 - constrain sparsity of hidden units

- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



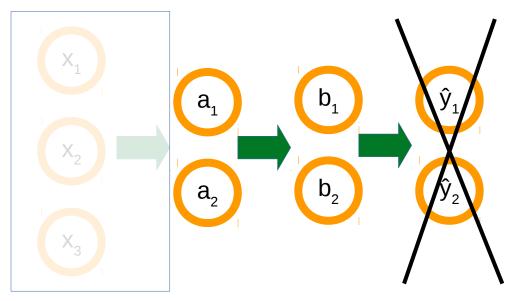
- drop output layer
 - consider hidden layer as new, dimensionreduced representation of input

- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



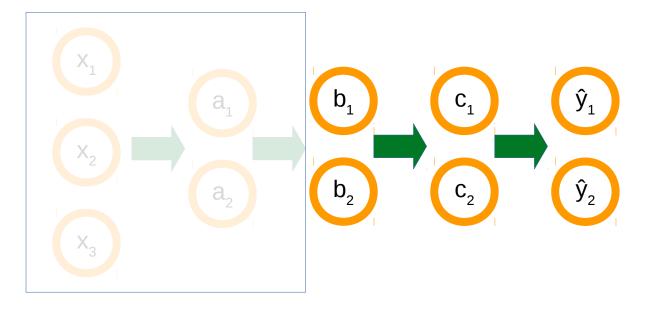
- repeat procedure for next layer
- predict hidden layer activity
- ŷ(x) ≈ a

- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder

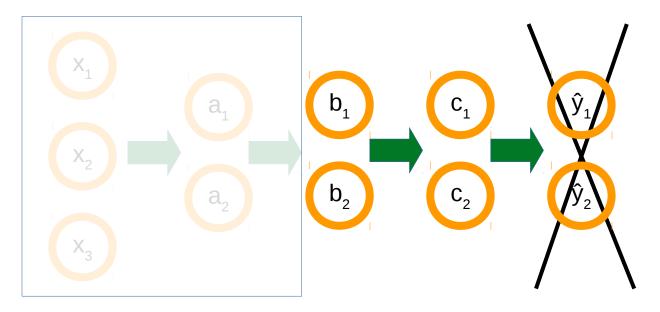


- repeat procedure for next layer
- predict hidden layer activity
- ŷ(x) ≈ a

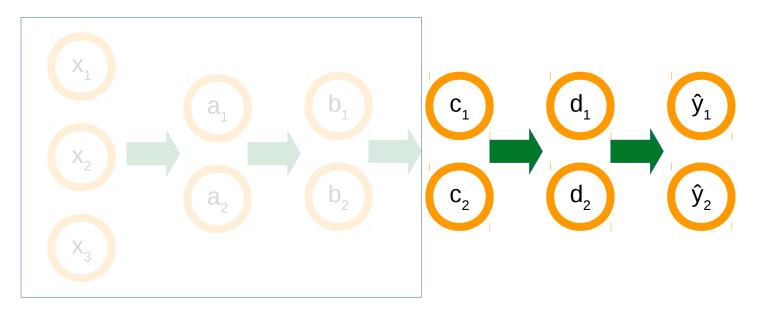
- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



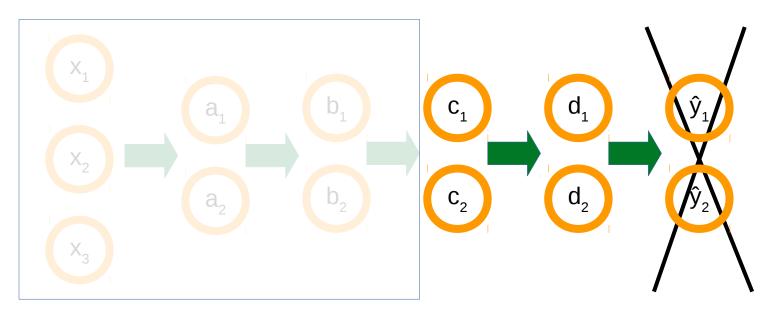
- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



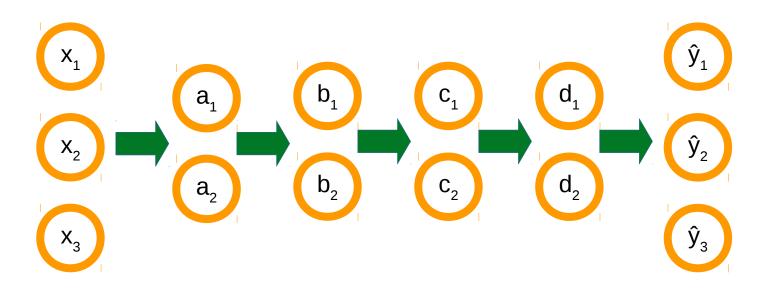
- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



- defeat vanishing gradient problem
- train network layer-wise using classical auto-encoder



• final supervised training to task

- stochastically corrupt input
- task: reconstruct original input

$$- E = \sum_{\alpha} \|\hat{y}(\tilde{x}^{\alpha}) - x^{\alpha}\|^2$$

- stochastically corrupt input
- task: reconstruct original input

-
$$E = \sum_{\alpha} \|\hat{y}(\tilde{x}^{\alpha}) - x^{\alpha}\|^2$$

- random dropout with probability p: $\tilde{x} = \begin{cases} 0 & \text{if } p < 0.5 \end{cases}$

CI

else

EC

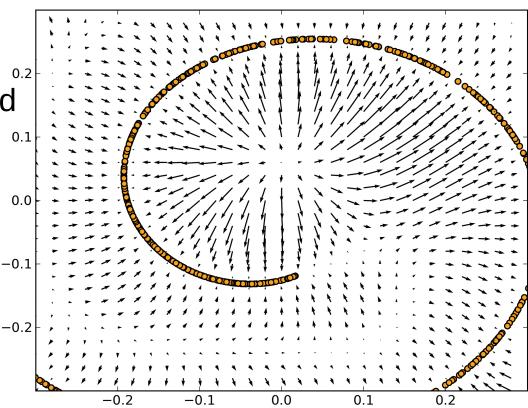
- stochastically corrupt input
- task: reconstruct original input

$$- E = \sum_{\alpha} \|\hat{y}(\tilde{x}^{\alpha}) - x^{\alpha}\|^2$$

- random dropout with probability p: $\tilde{x} = \begin{cases} 0 & \text{if } p < 0.5 \\ x & \text{else} \end{cases}$
- Gaussian white noise: $\tilde{x} = x + \eta$

$$\eta \sim \mathcal{N}(0,\sigma)$$

- stochastically corrupt input
- task: reconstruct original input
- learns vector field pointing towards data distribution manifold
- better generalization



=C

CI

Ingredients for Successful Deep Learning

- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training
- boosting gradient descent
- computing power
 - simple non-linearity
 - highly-parallel processing (GPU)
- Big Data

CITEC

Boosting Gradient Descent

- Batching
- Momentum
- Learning Rate adaptation

Gradient Descent

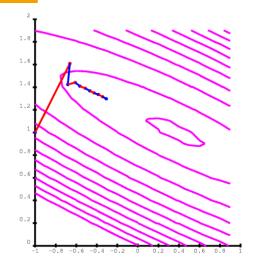
•
$$E = \sum_{\alpha} E^{\alpha}$$
 $E^{\alpha} = (\hat{y}(x^{\alpha}) - y^{\alpha})^2$

СІТЁС

Gradient Descent

•
$$E = \sum_{\alpha} E^{\alpha}$$
 $E^{\alpha} = (\hat{y}(x^{\alpha}) - y^{\alpha})^2$

- batch gradient: $\Delta w = -\eta \nabla_w E$
 - slow (full sweep over data required)
 - accurate



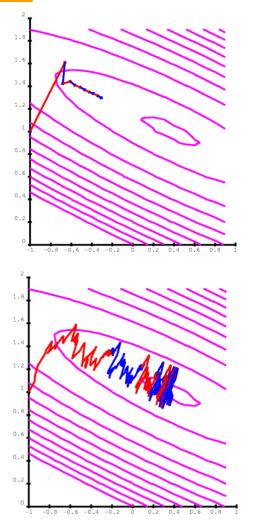
CIT

'EC

Gradient Descent

•
$$E = \sum_{\alpha} E^{\alpha}$$
 $E^{\alpha} = (\hat{y}(x^{\alpha}) - y^{\alpha})^2$

- batch gradient: $\Delta w = -\eta \nabla_w E$
 - slow (full sweep over data required)
 - accurate
- stochastic gradient: $\Delta w^{\alpha} = -\eta \nabla_{w} E^{\alpha}$
 - fast progress $\Delta w \propto \langle \Delta w^{lpha}
 angle_{lpha}$
 - fluctuates near minima / saddles
 - can escape from local minima

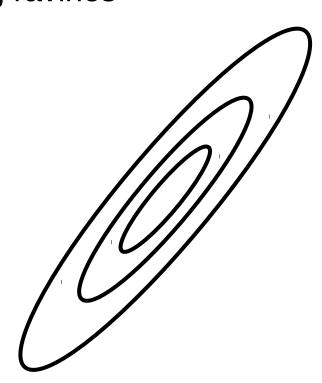


Mini-Batching

- combine the best of both worlds: average over small batch sizes
- fast convergence + reduced fluctuations
- assumes homogenous batches (e.g. randomly drawn)
- efficient on GPUs: parallel processing of several samples simultaneously
- reshuffle batches between epochs!

Classical Momentum

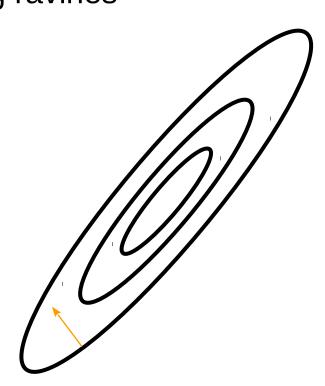
- gradient oscillates when navigating ravines
- $\Delta w_t = -\eta \nabla_w E$



=C

Classical Momentum

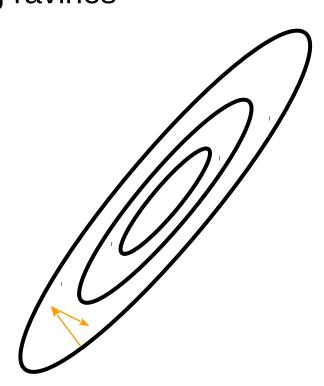
- gradient oscillates when navigating ravines
- $\Delta w_t = -\eta \nabla_w E$



=C

Classical Momentum

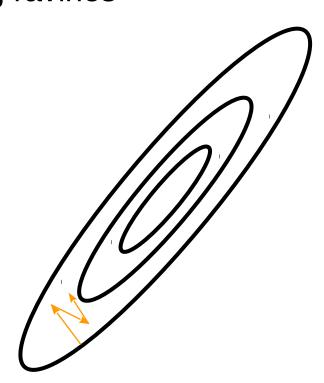
- gradient oscillates when navigating ravines
- $\Delta w_t = -\eta \nabla_w E$



=C

Classical Momentum

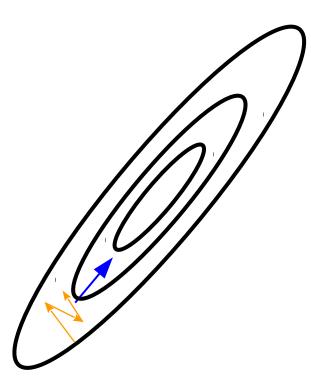
- gradient oscillates when navigating ravines
- $\Delta w_t = -\eta \nabla_w E$



=C

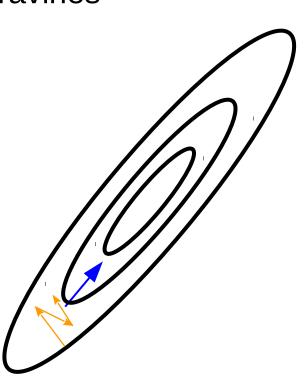
Classical Momentum

- gradient oscillates when navigating ravines
- $\Delta w_t = -\eta \nabla_w E + \alpha \Delta w_{t-1}$
- add discounted average gradient



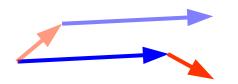
Classical Momentum

- gradient oscillates when navigating ravines
- $\Delta w_t = -\eta \nabla_w E + \alpha \Delta w_{t-1}$
- add discounted average gradient
- $\alpha \approx 0.9 < 1$
- speed-up by factor $\frac{1}{1-\alpha}$



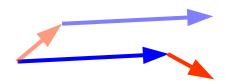
Nesterov-Momentum

- invert order of momentum & gradient computation
- **first** jump to new location (due to momentum)
- and then compute corrective gradient



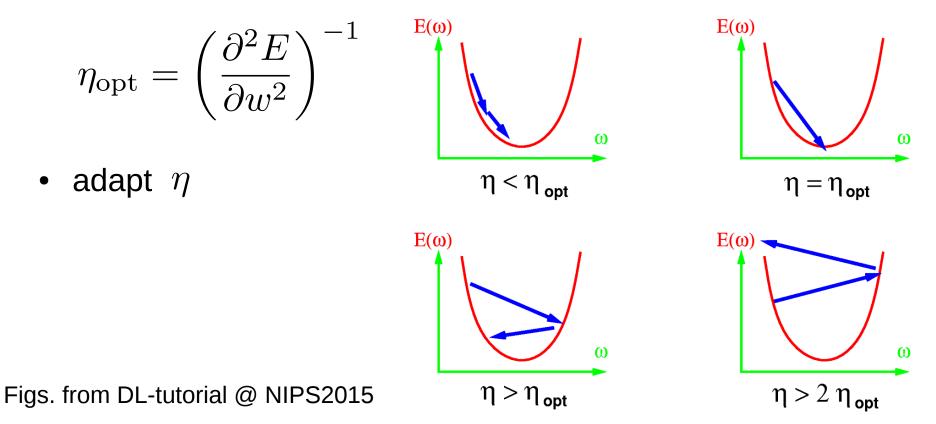
Nesterov-Momentum

- invert order of momentum & gradient computation
- **first** jump to new location (due to momentum)
- and then compute corrective gradient
- It's better to correct a mistake after you have made it.



Learning Rate Adaptation

- gradient defines direction
- optimal step size depends on curvature



CITEC

• use individual learning rates η_i

$$\eta_i$$
$$\Delta w_i = -\eta_i \operatorname{sgn}\left(\frac{\partial E}{\partial w_i}\right) = -\eta_i \operatorname{sgn}\left(g_i\right)$$

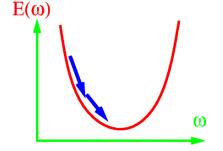
• use individual learning rates η_i

$$\eta_i$$
$$\Delta w_i = -\eta_i \operatorname{sgn}\left(\frac{\partial E}{\partial w_i}\right) = -\eta_i \operatorname{sgn}\left(g_i\right)$$

- use individual learning rates η_i
- monitor direction (sign) of gradient g_i

$$\eta_i$$
$$\Delta w_i = -\eta_i \operatorname{sgn}\left(\frac{\partial E}{\partial w_i}\right) = -\eta_i \operatorname{sgn}\left(g_i\right)$$

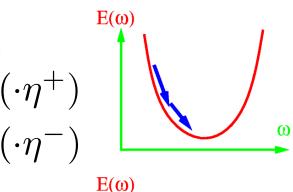
- use individual learning rates η_i
- monitor direction (sign) of gradient g_i
 - same sign: increase learning rate $(\cdot \eta^+)$

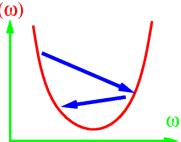


$$\eta_i$$
$$\Delta w_i = -\eta_i \operatorname{sgn}\left(\frac{\partial E}{\partial w_i}\right) = -\eta_i \operatorname{sgn}\left(g_i\right)$$

- use individual learning rates η_i
- monitor direction (sign) of gradient g_i
 - same sign: increase learning rate $(\cdot \eta^+)$
 - sign change: decrease rate
- use η_i directly as step size

$$\Delta w_i = -\eta_i \operatorname{sgn}\left(\frac{\partial E}{\partial w_i}\right) = -\eta_i \operatorname{sgn}\left(g_i\right)$$

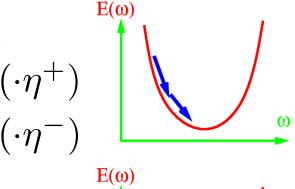


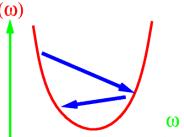


- use individual learning rates η_i
- monitor direction (sign) of gradient g_i
 - same sign: increase learning rate $(\cdot \eta^+)$
 - sign change: decrease rate
- use η_i directly as step size

$$\Delta w_i = -\eta_i \operatorname{sgn}\left(\frac{\partial E}{\partial w_i}\right) = -\eta_i \operatorname{sgn}\left(g_i\right)$$

• tends to overfitting





ADAGRAD

• automatically tune down learning rate based on learning history

CI.

=C

•
$$\Delta w_i(t) = -\frac{\eta}{\sqrt{\bar{g}_i^2(t) + \varepsilon}} \cdot g_i(t)$$

 $\bar{g}_i^2(t) = \sum_{\tau=0}^t g_i^2(\tau)$

- denominator grows with past update steps
- effective learning rate tends to zero
- → learning stagnates

ADADELTA

• average gradient updates across *finite* window using sliding average:

$$\bar{g}_i^2(t) = \gamma \cdot \bar{g}_i^2(t-1) + (1-\gamma) \cdot g_i^2(t)$$

ADADELTA

• average gradient updates across *finite* window using sliding average:

CI1

EC

$$\bar{g}_i^2(t) = \gamma \cdot \bar{g}_i^2(t-1) + (1-\gamma) \cdot g_i^2(t)$$

•
$$\Delta w_i(t) = -\frac{\eta}{\sqrt{\bar{g}_i^2(t) + \varepsilon}} \cdot g_i(t)$$

ADADELTA

• average gradient updates across *finite* window using sliding average:

CI

$$\bar{g}_i^2(t) = \gamma \cdot \bar{g}_i^2(t-1) + (1-\gamma) \cdot g_i^2(t)$$

•
$$\Delta w_i(t) = -\frac{\eta}{\sqrt{\bar{g}_i^2(t) + \varepsilon}} \cdot g_i(t)$$

correct units: nominator = average of weight updates

$$\Delta w_i(t) = -\frac{\sqrt{\overline{\Delta w}_i(t)^2 + \varepsilon}}{\sqrt{\overline{g}_i^2(t) + \varepsilon}} \cdot g_i(t)$$
$$\overline{\Delta w_i^2(t)} = \gamma \cdot \overline{\Delta w_i^2}(t-1) + (1-\gamma) \cdot \Delta w_i^2(t)$$

Adaptive Moment Estimation (ADAM)

- integrate momentum: sliding average of 1st and 2nd moments
- $m_i(t) = \gamma_m \cdot m_i(t-1) + (1-\gamma_m) \cdot g_i(t)$
- $v_i(t) = \gamma_v \cdot v_i(t-1) + (1-\gamma_v) \cdot g_i^2(t)$

Adaptive Moment Estimation (ADAM)

- integrate momentum: sliding average of 1st and 2nd moments
- $m_i(t) = \gamma_m \cdot m_i(t-1) + (1-\gamma_m) \cdot g_i(t)$

•
$$v_i(t) = \gamma_v \cdot v_i(t-1) + (1-\gamma_v) \cdot g_i^2(t)$$

 biased towards zero (due to initialization) bias correction:

$$\hat{m}_i(t) = \frac{m_i(t)}{1 - \beta_m^t} \qquad \hat{v}_i(t) = \frac{v_i(t)}{1 - \beta_v^t}$$

Adaptive Moment Estimation (ADAM)

 integrate momentum: sliding average of 1st and 2nd moments

•
$$m_i(t) = \gamma_m \cdot m_i(t-1) + (1-\gamma_m) \cdot g_i(t)$$

•
$$v_i(t) = \gamma_v \cdot v_i(t-1) + (1-\gamma_v) \cdot g_i^2(t)$$

 biased towards zero (due to initialization) bias correction:

$$\hat{m}_i(t) = \frac{m_i(t)}{1 - \beta_m^t} \qquad \hat{v}_i(t) = \frac{v_i(t)}{1 - \beta_v^t}$$
$$\Delta w_i(t) = -\eta \cdot \frac{\hat{m}_i(t)}{\sqrt{\hat{v}_i(t) + \varepsilon}}$$

CITEC

Comparison of Optimizers

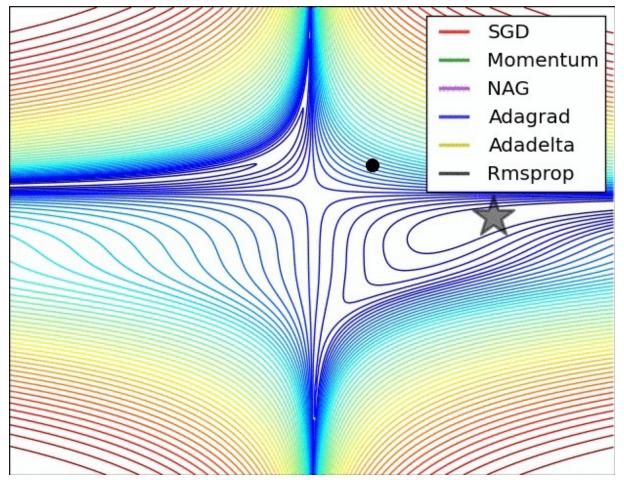


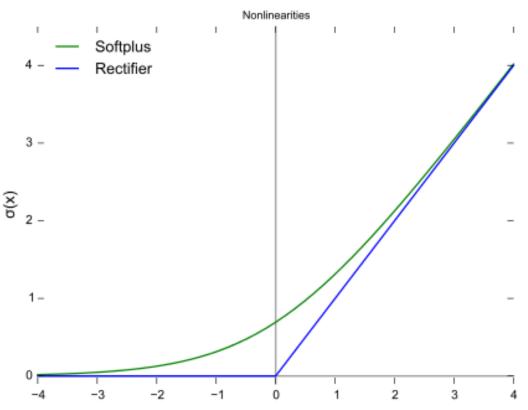
Fig. Sebastian Ruder

Ingredients for Successful Deep Learning

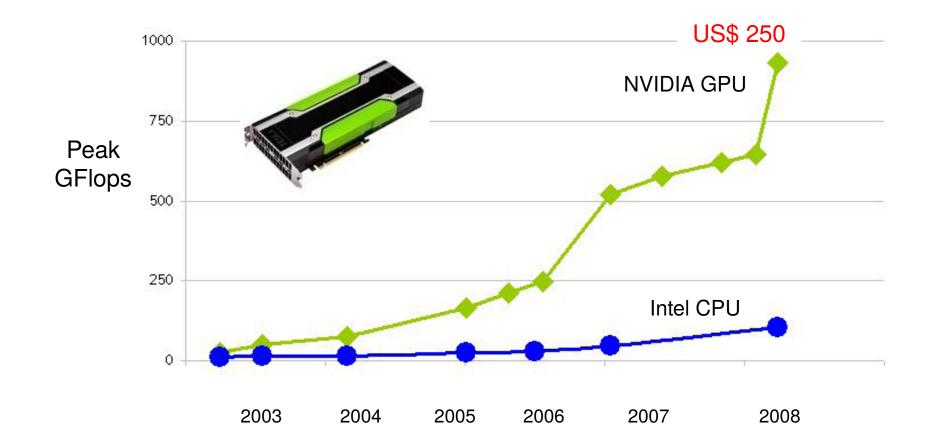
- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training
- boosting gradient descent
- computing power
 - simple non-linearity
 - highly-parallel processing (GPU)
- Big Data

Rectified Linear Unit

- Softplus: $f(x) = \ln(1 + e^x)$
- ReLu: $f(x) = \max(0, x)$
- suitable to model real numbers
- max induces sparsity in hidden units
- no vanishing gradient



Highly Parallel Processing with GPUs



Ingredients for Successful Deep Learning

- powerful priors to reduce number of parameters
 - deep hierarchies
 - Convolutional Networks
- layer-wise training
- boosting gradient descent
- computing power
 - simple non-linearity
 - highly-parallel processing (GPU)
- Big Data

CI

ΞC

Big Data

- many model parameters (weights) require many training examples to avoid overfitting
- ImageNet: 1.3 million images
- unsupervised pre-training possible