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Chapter 1

Introduction

A large part of your life, you are moving around and manipulating objects: preparing a meal, typing a text,
washing the dishes, building a house, assembling a bicycle, etc. Take a closer look at these actions, and you’ll
notice that they require a huge number of skills: recognizing the objects; estimating where they are; discriminating
between “obstacles” and the objects you are really interested in; planning what to do and how to do it; moving
arms, hands, and fingers to the right places and in the correct way in order to bring the objects where you want
them; in the meantime continuously adapting the motions to inputs from all of your senses (vision, touch, and
hearing being the most relevant for manipulation tasks). You seldom pause to think about the utmost complexity
of these “automatically” executed actions. Indeed, none of these actions is easy to automate. This text will
teach why. It covers the fundamentals of how people have tried to reach this ultimate goal of the “ artificially
intelligent machine”: the robot. The text attacks the problem from both the engineering side of the problem (i.e.,
those things for which engineers have come up with solutions that basically rely on the application of the laws of
physics or the theorems of mathematics) and the artificial intelligence side (where human behaviour has been the
major source of inspiration). The real breakthrough of “intelligent” robots will most probably only be achieved
if the engineering and AI sides can meet and join their forces. Hence, the major goal of this text is to fill the gap
between both approaches. Students with an engineering background will learn what “information” means, and
“uncertainty,” and “reasoning;” other students will learn the principles of how machines move and how sensors
make models of the real world.

1.1 When was the robot born?

For economic or scientific purposes—or just for fun—mankind has, for centuries already, tried to make machines
autonomously perform manipulative actions not unlike the ones mentioned in the previous paragraph, and to
mimic the human behaviour as closely as possible. However, only since the advent of the hydraulic and electric
motors, and especially of the electronic computer, this automation of human abilities has become realistically
feasible. Hence, a whole new science of making “mechanical slaves” has come into existence. Because man’s
imagination is always decades ahead of his capabilities, this science got its name long before it really became a
scientific discipline worth the name: the robot appears on stage (literally) for the first time (1921) in the theatre
play R.U.R. (Rosum’s Universal Robots) by the Czech writer Karel Čapek, [2]. The Czech word robota means
“regular forced labor of serfs—poor peasants on the land of their lords in a feudal society.”1 The word “Rosum”
does not only represent the name of a person, but it also means “reason” in Czech as well. So, already in its

1Source: Czech Society For Cybernetics and Informatics, July 1994.
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first confrontation with the world, the robot shows both sides of machine intelligence: cheap and versatile labour,
but also potential misuse and ethical problems. It’s interesting to note that R.U.R.’s robots are the product of
genetic engineering rather than mechatronic engineering: the robots are created from human genes from which
all emotional factors have been removed (or rather, their creators were convinced they removed them all. . . ).

Outside of the theatre, real industrial robots were developed in the fifties and sixties; the designs that populate
most of the automobile assembly plants were invented in the late sixties. The major developments took place in
the American car industry (especially General Motors), and in the nuclear industry. The real industrial robot
looks quite different from the robot encountered in science fiction films—quite a disappointment in fact. However,
recently there is a growing interest for developing humanoid2 robots, especially in Japan. For example, after ten
years of research, Honda Corporation in 1997 presented its first two-legged (“bi-ped”) walking robot, which looks
very much like a human in a space suit.3 This robot comes closer to our intuitive notion of a robot, and that’s
exactly the purpose of this (almost exclusively Japanese) research: make the machine look and act like a human,
in order to decrease the threshold for humans to use robots. However, the capabilities of this humanoid robot are
still far below those of a real human: it can walk and that’s just it. . . Nevertheless, it should come as no surprise
that your kids will want to buy “intelligent” toy robots a couple of years from now.4

1.2 What is robotics?

The word robotics was coined by the Russian-born scientist and science fiction writer Isaac Asimov (1920–1992),
in the early 1940s; again, much before any real robots existed. As a scientific research area robotics is currently
an extremely interdisciplinary activity. It is a rich mixture of exact and applied sciences such as geometry,
mechanical design, kinematics, statics and dynamics, (numerical) linear algebra, system identification and control
theory, real-time operating systems, electronics, software engineering and Artificial Intelligence, deterministic and
stochastic filtering or sensor signal processing, etc. Roughly speaking, robotics has two faces: (i) the mathematical
and engineering face, which is quite “standardized” in the sense that a large consensus exists about the tools
and theories to use, and (ii) the AI face, which is rather poorly standardized, not because of a lack of interest
or research efforts, but because of the inherent complexity of “intelligent behaviour.” Research in engineering
robotics follows the bottom-up approach: existing and working systems are extended and made more versatile.
Research in artificial intelligence robotics is top-down: assuming that a set of low-level primitives is available, how
could one apply them in order to increase the “intelligence” of a system. The border between both approaches
shifts continuously, as more and more “intelligence” is cast into algorithmic, system-theoretic form. For example,
the response of a robot to sensor input was considered “intelligent behaviour” in the late seventies and even
early eighties. Hence, it belonged to A.I. Later it was shown that some simple sensor-based tasks such as surface
following or visual tracking could be formulated as control problems with algorithmic solutions. From then on,
they did not belong to A.I. any more.

Robotics is roughly based on the integration of knowledge from the domains of sensing, planning, and con-
trol. Moreover, in classical, engineering-oriented robotics, modelling is the central tool for this integration: the
theoretical descriptions are in terms of a physical model—i.e., an abstraction of the real world— containing only
those properties of the real world that are relevant for a given application. However, one usually does not work
on the physical models directly, but rather on yet another level of abstraction: the coordinate representations of
this physical model, sometimes called the “mathematical model”. Moreover, often only linear models are used.
Linear models enormously simplify proofs and algorithms. But complex, life-like behaviour is often generated by
the nonlinear apects of the system only!

2http://www.androidworld.com/prod01.htm
3http://www.honda.co.jp/english/technology/robot/index.html
4http://www.aibo-europe.com/
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planning control
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Figure 1.1: Planning, sensing and control are the major components of any model-based robotic system.

A relatively new branch in robotics investigates the applicability of model-free approaches (which are inher-
ently nonlinear): learning, genetic algorithms, neural networks, etc. These approaches are not discussed in this
introductory text.

Let’s give an example of the chain “real world–physical model–coordinate model.” A real robot could physically
be modelled as:

1. A set of rigid links, connected by perfect, frictionless joints that allow the device to move.

2. Each link has a certain mass and inertia.

3. The joints are driven by electrical motors with known (or rather, estimated) characteristics.

4. The position of the joints is sensed by encoders or resolvers, and its velocity by tachometers.

5. A computer digitizes and processes the measurements, uses them to generate control signals that keep the
robot on its desrired path, and interacts with the human operator.

The corresponding coordinate descriptions could be:

1. A geometrical model of directed lines (“vectors”) representing the links and connecting reference frames at
the positions of the joints; the relative orientation of the lines and frames depend on the robot joint angles.

2. A set of “centre of mass” reference frames, to which mass and inertia matrices are assigned.

3. A set of RCL loops in the motors (resistors, capacitances, inductances), with ideal current and/or voltage
sources.

4. Discrete or continuous stochastic variables, with given “noise” characteristics that represent the uncertainty
about the world they model.

5. A set of PID control algorithms.

The above-mentioned physical and coordinate models are not unique: in general, multiple physical models exist
for the same real world system, and, in turn, multiple coordinate representations exist for each physical model.
No physical or coordinate model is ever completely correct!

3



1.3 Where is the intelligent robot?

Although the motion capabilities of current robotic devices are orders of magnitude better than those of a human
being—i.e., they can be made faster, more accurate, and stronger than any human—their “intelligence” and
“dexterity” are infantile, to say the least. The gap between the commercial and the academic state of the art in
robotics is an order of magnitude smaller than the gap with the science fiction robots, but still considerably large:
approximately ten years. And this gap tends to grow even larger all the time. The major cause is the difference
in reliability between the simple (and hence robust) position-controlled robot arms employed in industry on the
one hand, and the complex sensor-guided (and hence error-prone) research prototypes on the other hand: no
advanced sensor processing and interpretation techniques currently exist that meet the industrial norm of “6σ”
reliability—i.e., a Mean Time Between Failure (MTBF) of over 20 000 hours.

The general public’s expectations towards robotic devices have been enormously inflated by the fantasies and
special effects of the entertainment industry. The human-like machines—in shape as well as in behaviour—brought
on stage in these science fiction stories are indeed nothing more than what their name suggests: fiction. The
realisation of intelligent machines will require many more generations of highly educated and qualified scientists
and engineers, able to understand and integrate the progress in all those diverse sciences and technologies that,
together, make up robotics. To prepare the students for this challenge is exactly the goal of this text.

Despite the somewhat pessimistic remarks above, there does exist one particular theoretical toolhat has
succeeded the last couple of years to merge the “low-level” control work with the “high-level” Artificial Intelligence
work. This tool is Bayesian probability theory. The good news is that is can be used equally well to cope with the
uncertainty inherent in sensor-based control, as with the uncertainty inherent in reasoning about actions. The
bad news is that (i) due to its mathematical rigour, it can be quite difficult to apply to a given robotics problen,
and (ii) the majority of robotics researchers are not familiar with the Bayesian approach.

1.4 What kind of robots?

This text basically investigates the following types of robotic devices: serial robot arms, parallel robot arms,
humanoid robots, and mobile robots. Except for the humanoid robot, these are the only types that are currently
and routinely used in industrial or service applications.

1.4.1 Serial manipulators

Serial manipulators are by far the most common industrial robots. Often they have an anthropomorphic me-
chanical arm structure (Fig. 1.2), i.e., a serial chain of rigid links, connected by (mostly revolute) joints, forming
a “shoulder,” an “elbow,” and a “wrist.” Their main advantage is their large workspace with respect to their
own volume and occupied floor space. Their main disadvantages are (i) the low stiffness inherent to an open
kinematic structure, (ii) errors are accumulated and amplified from link to link, (iii) the fact that they have to
carry and move the large weight of most of the actuators, and (iv) hence, the relatively low effective load that
they can manipulate.

It requires at least six degrees of freedom to place the manipulated object in an arbitrary position and
orientation in space—or rather, in the workspace of the robot. Hence, many serial robots have six joints. However,
the most popular application for serial robots in today’s industry is pick-and-place assembly: the robot takes an
object from a component feeder system (such as a conveyor belt or a vibrating bowl feeder) and brings it to
its final place in an assembly setup. This requires only four degrees of freedom maniplators: a vertical motion
(translation along Z) and the three planar degrees of freedom (translation along X and Y , and rotation about Z).
For this purpose, special assembly robots are built, of the so-called SCARA type (Selective Compliance Assembly
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Figure 1.2: Serial robot. Figure 1.3: SCARA robot.

Robot Arm), (Fig. 1.3). This design was invented by Prof. Hiroshi Makino of Yamanashi University, Japan, in
1972.

1.4.2 Parallel manipulators

A parallel manipulator consists of a fixed “base” platform, connected to an “end effector” platform by means of
a number of “legs” (Fig. 1.4). These legs often consist of an actuated prismatic joint, connected to the platforms
through passive (i.e., not actuated) spherical and/or universal joints (Fig. 1.5). Hence, the links feel only traction
or compression, not bending, which increases their position accuracy and allows a lighter construction. The
actuators for the prismatic joints can be placed in the motionless base platform, so that their mass does not
have to be moved, which again makes the construction lighter. Parallel manipulators have (in principle!) high
structural stiffness, since the end effector is supported in several places at the same time. All these features
result in manipulators with a high-bandwidth motion capability. Their major drawback is their limited workspace,
because the legs can collide (with each other and with themselves) and, in addition, each leg has five passive
joints that each have their own mechanical limits. Major industrial applications of these devices are airplane
and automobile simulators. They also become more popular in (i) high-speed, high-accuracy positioning with
limited workspaces, such as in assembly of Printed Circuit Boards, (ii) as micro manipulators mounted on the
end effector of larger but slower serial manipulators, and (iii) as high-speed/high-precision milling machines.

The example above is called a fully parallel manipulator, because each leg has only one actuated joint. Alter-
natively, each of the legs could be a serial robot with more than one actuated joint. Fully parallel manipulators
with two-by-two intersecting prismatic legs, (Fig. 1.4), are often called Stewart platforms, referring to the author
of the “first” article describing the application of a parallel manipulator as a flight simulator, [7]. The same fully
parallel design was already used some years earlier in a tire testing machine, as reported by Gough [4]. Hence,
some authors prefer the name Stewart-Gough platform to honour both.

In contrast with serial manipulators, a (fully) parallel manipulator needs at least six legs (with six degrees of
freedom). Otherwise, the structure is not stable: it can move without changing the lengths of the legs.
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Figure 1.4: Parallel robot of the Stewart-Gough type. Figure 1.5: Universal (“Hooke”) joint.

1.4.3 Mobile robots

Roughly speaking, mobile robots are automated cars or bicycles, i.e., wheeled vehicles with two degrees of freedom:
(i) forward-backward driving and rotation of the steering wheel (e.g., automatic cars), or (ii) two independently
actuated wheels (e.g., electric wheelchairs). Mobile robots are currently mainly used to transport materials over
large factory floors. In this case, a planar model suffices to represent a mobile robot’s motion freedom. Outdoor
navigation on rough terrain (e.g., planetary rovers) requires three-dimensional motion (and sensing!) capabilities.

Mobile robots are prime examples of nonholonomic systems: they can not move sideways (i.e., they have only
a two-dimensional space of instantaneous motion freedom), but yet they can attain every possible position and
orientation in their plane of motion (i.e., they can attain all configurations in a three-dimensional space). There
exist so-called omni-directional mobile robots, with special wheel designs that do allow instantaneous motion in
three directions, e.g., [1, 6, 8, 9]. These devices have not been very successful until now, because of many practical
problems: clearance with the floor, difficult to add pneumatic tires, poor power transmission, etc. But the novel
powered caster design, [5], seems to be able to solve all the practical problems.

Another feature of a nonholonomic system is that it can generate a net motion (i.e., a change in its “external”
parameters, being its position and orientation) by a cyclic motion of its “internal” parameters (i.e., its wheel
angles). Other nonholonomic systems are: a spinning satellite, a falling cat, a cutting knife, a diver or gymnast
performing somersaults or spins. Nonholonomic systems require advanced planning and control approaches, many
of which rely on nonlinear geometry.

1.4.4 Humanoid robots

Roughly speaking, a robot is called humanoid if it looks a lot like a human. Since Karel Čapek introduced the
word “robot” to denote slaves derived from real human beings, that word has commonly been used to indicate
human-like machines, with high intelligence and dexterity. Two decades before Čapek already, Otto Fisher
described the dynamics of human motion, [3]. However, robotics as an engineering discipline really started only
after the second World War, and has long been mostly limited to the simple robot arms used in the nuclear and
manufacturing industries. Only the last decade, the state-of-the-art in engineering has become sufficiently mature
and miniaturized in order to make humanoid machines possible. A robot is called “humanoid” if it has two legs,
two arms, and a head, and uses them in a way similar to human beings: the legs to walk, the arms to manipulate
objects, and the head to see and hear.

Currently, the resemblance is at best formal and superficial: no machine approaches the intelligence of a

6



human. However, the psychological effect of humanoid robots is large: humans seem to have much less problems
to interact with a human-like robot than with a more classical robot arm, even if the functionalities of both are
similar.

From the mechanical point of view, the humanoid robot is different from the serial and parallel architectures
in that its topology is a tree (Fig. 1.6), i.e., there is only one path from any one link to any other link. A tree
structure is the simplest extension of the serial structure, and requires only slightly more complex algorithms for
its modelling and control.
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Figure 1.6: Tree-structure topology of a humanoid robot.

1.5 Conventions and notations

The following paragraphs explain the conventions and notations that will be used in the rest of the text.

References. Each chapter ends with a section containing all references used in that chapter. References are
given between square brackets, like this: [2].

Vectors, matrices A boldface lowercase letter (e.g., “a”) denotes a column of coordinates. Several distinct
types of coordinates are used:

1. The coordinates of a point, i.e., an ordered column of three numbers representing the directed line element
from the origin of a reference frame to the position of a point. Both the point itself as well as its coordinates
will often be denoted by the same notation, p.

2. The homogeneous coordinate vector, i.e., the ordered column of four numbers, the last of which is always
“1”, p = (px py pz 1)T , and which represent the same coordinates as above. Homogeneous coordinates
have some algebraic advantages, as will become clear in later Chapters.

3. The coordinates of a vector, i.e., an ordered column of three numbers, v = (vx vy vz)
T , representing the

vector’s coordinates in a given reference frame.

4. The coordinates of a line vector, i.e., a vector with a direction and a magnitude, and bound to a fixed line
in space.
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5. The coordinates of a free vector, i.e., a vector with a direction and a magnitude, but whose exact point of
application has no physical relevance.

The difference between a “point” and a “vector” might seem strange at first sight. The distinction is as follows:
the spaces of points (such as the plane of the floor, or the three-dimensional space we live in) have no particular
point that serves as “origin” in natural way; vector spaces (such as the space of all velocities of a moving point)
do have such a naturally defined origin (e.g., the zero velocity vector). Moreover, the “addition” of two points is
not well defined (it depends on the arbitrary choice of origin, while adding two velocity vectors is well-defined,
independently of the chosen (inertial!) origin. (This is a first example of the difference between coordinates
properties on the one hand, and the structure of the physical model the coordinates represent, on the other
hand!)

Unit vectors are vectors with unit magnitude, and are often denoted by e. Since robots live in the three-
dimensional space that surrounds us, this text uses mostly three-vectors (or four-vectors for homogeneous coor-
dinates). However, rigid bodies have six degrees of motion freedom, and hence six-vectors occur frequently too.
Six-vectors are written in an upright font—such as for example t or w—and vectors of other or non-specified
dimensions in a slanted font—such as t or w.

An uppercase letter denotes a transformation within one single space, or between two different spaces. For
example, A(p, q) : R × N → R is a (possibly nonlinear) function mapping a real number and a natural number
to a real number. The same letter, but in a boldface font, denotes the matrix of A’s coordinates if A is a linear
transformation:

A =




A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn


 . (1.1)

Two special examples are the n-dimensional identity and zero matrices:

1n =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
︸ ︷︷ ︸

n








n, 0n =




0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
︸ ︷︷ ︸

n








n. (1.2)

The index “n” is often omitted if the dimension is clear from the context. One single column of a matrix is a
coordinate vector; it is usually denoted by the lowercase boldface letter corresponding to the letter denoting the
matrix, or by the uppercase boldface letter of the matrix, together with a subscript indicating the column:

A =
(
a1 . . . an

)
=

(
A1 . . . An

)
. (1.3)

Frames {f} is the shorthand notation for a frame called “f” in the three-dimensional space. The letters X,Y ,
and Z denote the three coordinate axes of a frame, and O denotes the origin of the frame. Hence, the extended
notation for the frame “f” is: {Of ;Xf , Y f , Zf}. ex,ey and ez denote unit vectors along the positive X,Y and
Z axes of a frame; if the name of the frame (e.g., {a}) is important, the notations xa,ya and za are often used
instead. Rigid bodies are sometimes denoted by the name of a reference frame that is rigidly fixed to the body.

Subscripts and superscripts A leading superscript to a transformation, a vector, or a matrix identifies the
rigid body whose physical characteristics are described: aT . A leading subscript denotes the frame with respect
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to which a physical characteristic is expressed: fp. A trailing superscript indicates a feature of a frame, vector,
etc.—e.g., {f}a says that the frame {f} is considered fixed to rigid body a—or it enumerates the members in a
set—e.g., p1, . . . ,pn are the position vectors of a given set of n points. A trailing subscript denotes a coordinate
component: px is the projection on the X axis of a position vector p. So, the coordinates, with respect to the
reference frame {a}, of the ith vector pi in a set are given by the column vector




api
x

api
y

api
z


 . (1.4)

Distance The Euclidean “squared distance” d(p1,p2) between two points p1 and p2 is given by the well known
formula

d(p1,p2) = (p1
x − p2

x)2 + (p1
y − p2

y)2 + (p1
z − p2

z)
2. (1.5)

This notation is extended to the weighted distance dW (a, b) between two elements a and b in a given metric space
(i.e., a space equipped with a distance function), with W the “weighting” matrix of the distance function. If the
space is a linear vector space, a and b are vectors (so, they are denoted by the boldface symbols a and b) and the
weighted squared distance reduces to the matrix expression

dW (a, b) = aT Wb. (1.6)

An example where this weighting is used could be the following: if a and b represent two sets of joint velocities
of a serial robot, and W is the inertia matrix of the robot expressed in joint coordinates, then the W -weighted
distance between both sets of joint velocities is dW (a, b) = 1

2aT Wb, which has the physical dimensions of kinetic
energy.
aT denotes the transpose of the column vector a:

aT =




a1

...
an




T

=
(
a1 . . . an

)
. (1.7)

Dimensions Robots live in the three-dimensional Euclidean space, E3. Note however, that this notion of
three-dimensionality comes from looking at the points in this space. On the other hand, a rigid body in E3 has
six degrees of motion freedom, and mobile robots can most often be modelled as living on a plane, i.e., with
only three degrees of motion freedom. Hence, saying that a particular model is “3D” or “2D” could lead to some
confusion. This text avoids this confusion, by using these terms to refer to the motion degrees of freedom of an
object, and not to the dimension of the space the object lives in. If the Euclidean space is equipped with an
orthogonal reference frame with respect to which the coordinates of all entities living in the Euclidean space are
expressed, we call this Euclidean space a Cartesian space (named after the French philosopher René Descartes,
1596–1650).

Kinematic joints The robotic devices discussed in this text are mechanical constructions whose motion degrees
of freedom are always generated by a limited set of joints. Only four types of joints will be used: (i) revolute
joints (denoted by the symbol “R,” with one degree of rotational motion freedom; revolute joints are also called
rotational joints), (ii) prismatic joints (“P ,” with one degree of translational motion freedom; prismatic joints
are also called sliding joints), (iii) spherical joints (“S,” with three degrees of rotational motion freedom), and
(iv) universal joints (also called “Hooke” joints (Fig. 1.5), “U ,” with two degrees of rotational motion freedom).
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Position and orientation of a rigid body A point has a unique position with respect to a chosen reference
point (or frame). A rigid body is a collection of points, that always keep the same relative position with respect
to each other. A frame, rigidly fixed to a rigid body, can serve as a mathematical abstraction of that rigid body;
the position of the frame’s origin, and the orientation of the frame’s axes, uniquely determine the position and
orientation of the rigid body to which the frame is attached. This text often uses the words “pose” and “frame”
interchangeably as shorthands for “position and orientation.”

Base and end effector frames Serial and parallel manipulators have a base and an end effector : the base
is the immobile part of the robot, rigidly fixed to the world; the end effector is the extremity of the last link,
to which tools can be attached (hence, it is often called mounting plate too). In the geometric model of the
manipulator, base and end effector are represented by the reference frames {bs} and {ee}, respectively.
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Chapter 2

Model-based uncertainty

2.1 Introduction

This course focuses on model-based robot control, i.e., the sensing, planning and control modules all rely on
explicit mathematical models of the robot system and its interactions with the environment. Models are used
to predict the behaviour of the robot; the difference between these predictions on the one hand, and the sensor
measurements on the other hand, provide information about how to adapt the models. Adaptation is necessary
because, obviously, these models are always incomplete or inaccurate. In other words, they suffer from uncertainty,
or incomplete information. This Chapter gives the fundamentals of how the Bayesian probability approach copes
with this uncertainty.

Roughly speaking, there exist three levels of uncertainty in the system models, that give rise to three corre-
sponding levels of increasingly complex estimation or identification algorithms:

1. Parameter estimation. In this sort of problems, the robot has a parameterized model of the system, and its
goal is to estimate these parameters. Examples are: estimation of the geometric and/or dynamic parameters
of a robot arm; estimation of the motion of an object that the robot perceives through its sensors; estimation
of the geometry of the environment, using lines as primitive model building blocks. Typical algorithms in
this category are the Kalman Filter and the least-squares estimators.

2. Pattern recognition. The robot has a model of a particular object it has to recognize and localize in its
environment. That is, it has to compare the model to the continuous stream of measurements, and find the
best match. Examples are: finding faces in camera images; finding the position and orientation of workpieces
in an assembly cell; finding a particular room in a building. The Hidden Markov Model algorithm is one of
the best-known representatives in this category (and is also the basis of speech recognition).

3. Model building. Instead of requiring the human programmer to come up with the models that the robot
needs, one could use the robot and its sensors to produce the model. For example, a mobile robot driving
around in a building (under human supervision, or autonomously using simple obstacle avoidance skills)
should be able to produce a (at least topologically correct) map of the building. The EM algorithm is the
algorithm of choice for this job.

This text also tries to make clear the distinction between, on the one hand, updating of information based on
new measurements, and, on the other hand, the process of decision making that is based on this information.
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2.2 Knowledge representation

The human programmers must store their knowledge about a task in a computer-processable form. This knowledge
representation can be done by means of a mathematical model, or by giving a set of statements (also called
propositions) about the world. (These propositions themselves, of course, could be derived from a mathematical
model.) Knowledge representation is a multi-stage process: (i) identify the knowledge needed to solve the problem
(this is the most difficult step, invariably performed by the human), (ii) select a language in which that knowledge
can be represented, and (iii) write down the knowledge in that language, [11, p. 107]. The use of propositions is
commonplace in classical logic: each proposition says something about the world, and is either true (“1”) or false
(“0”). Probability theory, and many of its “competitors,” use the whole interval [0, 1] instead of the binary set
{0, 1}. Two fundamental structures exist in knowledge representation:

1. State. The state is the set of parameters that contain all information needed to predict the future evolution
of the controlled system. This means that the past can be forgotten: the exact way how the system arrived
in its current state does not influence its future evolution. A system with this property is also often called a
Markov process. The Markov property is very interesting in real-time control, since it allows to reduce the
dimension of the model that represents the system and which increases the efficiency of inference (i.e., the
model update algorithms). On the other hand, a Markov process cannot “undo” any estimates. For example,
a mobile robot that builds a map of an indoor environment must be able not only to adapt the estimate
of its current position with respect to the currently observed “landmarks” in its environment, but also to
adapt drastically its map itself (e.g., change the topological connection of corridors or rooms), whenever it
has unexpectedly seen some landmarks more than once, [43].

The state of a system is not always directly measurable: the hidden states must be “observed” (“estimated”)
from (i) the measurements, and (ii) a model that links the measurable quantities to the hidden and directly
observable states. This estimation is a prime example of the use of inference in robotics.

2. Networks. If the state of the world is too big, one often divides it into smaller parts whose information
content is only weakly coupled. These sub-parts make up a network. The A.I. literature gives many names
to some similar network (or graph) structures of propositions: belief network [29], Bayes net, causal graph
[21], causal network [44], influence diagram, relevance diagram, recursive model [45], semantic net, [20]. A
network consists of edges and nodes. Each node is a proposition, each edge denotes dependence of the “truth
values” (binary logic, probability, or other) of the propositions at both ends of the edge. A directed edge
denotes causal influence: the node from where the directed edge starts is the physical cause of the node
where the edge ends. In general, an edge (directed or undirected), or a set of edges, represents “probabilistic
dependence” of connected nodes, i.e., knowing something about the proposition in one node gives information
about the proposition in the other node. For example, the fact that one “eye” in a robotic stereo camera
has detected a bright source of light, increases the probability for the other eye to detect the bright spot
too, but it does not cause the detection.

A network allows two different kinds of reasoning:

1. Causal reasoning. This is reasoning from causes to consequences, i.e., following the arrows in the network.
It predicts the outcome of the system when the inputs to it are known.

2. Evidential reasoning (or, diagnostic reasoning). This is reasoning from consequences to causes, i.e., the basis
of “plausible inference,” or “reasoning under uncertainty”: observing a certain “symptom” makes a (number
of) “hypotheses” more or less probable. “Plausible reasoning” means several things: it should correspond
to what a human would call common sense; it should use all information it has, and not invent any data; it
should be consistent, in the sense that the same conclusion should be drawn from the same data, irrespective
of the reasoning steps in between and independent of which person or computer agent does the reasoning
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(provided that different agent and persons do not have different background information that is relevant to
the problem at hand!).

Figure 2.1 presents a simple example. The robot brings its probe in contact with the environment (only the probe
is shown in the figure!). If the robot knows with which geometric “feature” (i.e., “I,” “II” or “III”) the probe is
in contact, it can deduce (i.e., reason causally) what next contact transition it can expect: falling off an edge to
the left or to the right, or bouncing against a “wall” in either direction. On the other hand, if the robot has only
information about which contact transitions it has already detected, it must make plausible assumptions (reason
evidentially) about the actual geometric feature.

II
III

I

II IIII

Figure 2.1: Left: a probe contacts the environment on one of its horizontal features (“I,” “II” or “III”). Right:
the features “causally” determine what contact transitions are possible.

More important than the fact that connected edges in a network correspond to correlated propositions, is the
fact that the network models conditional independence, i.e., given the value of a node in the network, the values
of all its “pre-decessor” nodes that are connected to each other only through that node, are determined by the
value of that node, and not by the value of the other pre-decessor nodes.

A network puts structure on the knowledge about the system; it factors a problem in sub-problems, or, in
other words, it models conditional independence of parameters in a system, e.g., [1, 30, 32]. In the words of Judea
Pearl, [30, p. 350]: “That structure is more important than numbers in probability theory needs to be taught to
all users of probability.” The network models the structure in the knowledge the robot has about the task; but
it is still most often the human user who designs the network.

During a sensor-based robot task, the values of the different parameters in the network change, due to new
information from the sensors. In general, nodes and/or edges must also be added or deleted. However, this text
does not discuss this problem, nor does it discuss the techniques to limit the computational burden of updating
large networks; see e.g., [4, 22, 38] for some pointers to the literature.

2.3 Sources of uncertainty

Uncertainty corresponds to incomplete information, i.e., the truth values of the propositions that model the world
cannot be determined unambiguously. Uncertainty has many sources:

1. Poor sensors. One should try for oneself to imagine what the sensing capabilities of robots are: a computer
program investigating the pixels in a camera image has an efficiency and a typical “field of view” comparable
to a person who looks at a scene in the mist and through a small peephole; a robot arm equipped with a force
sensor gets information similar to a blind and deaf person carrying a white stick; a mobile robot equipped
with a ring of ultrasonic sensors receives nothing more but a stream of echos similar to those heard by a
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blind person who throws pebble stones in his environment at regular intervals in time and space. Not very
rich information at all. . .

2. Poor models. Every model is only an approximation of the real world, a compromise between accuracy on
the one hand, and efficiency of modelling and sensor processing on the other hand. For example, make a
mental model of your bicycle, and then compare that mental model to the real one, just to find out that you
undoubtedly forgot many details. But most probably, all relevant functional details will be there.

3. Poor frame. The word “frame” (or, “context”) is used here in its A.I. sense: it represents all a priori,
background or default knowledge that the robot possesses when executing a task. Frames are very difficult
to keep complete, updated, and consistent, e.g., [39]. One of the largest problems in man–machine interaction
is to have the machine recognize the context in which the human users gives their commands to the machine,
or in which they expect information feedback from the machine.

4. Poor experience. Even if the model is sufficiently rich for the current task, the robot has not always had the
chance to gather information about all relevant parameters in the model.

There exist basically three (complementary!) ways to deal with uncertainty, [37]:

1. Reduce it physically. This is what is done in industrial “hard” automation: all parts are fed to the robot at
exactly known locations. This requires a very expensive set of peripheral tools and long set-up times, while
drastically reducing the flexibility.

2. Tolerate it. This means that the robot controller must be robust against deviations between the real and the
expected evolution of the system. This is the usual approach at the lower control levels, because uncertainties
are “small” and on a continuous scale. Typical examples are: inaccurate knowledge about the friction in a
motor, or about the exact direction of the contact normal.

3. Represent it and reason about its consequences. This is the approach to be taken by high-level “intelligent”
robots, in order to cope with “large” and discrete uncertainties. Typical examples are: there is a door on
the left or there is a staircase; the “landmark” that has just been observed corresponds to the exit towards
the secretary or rather to the exit towards the wardrobe.

2.4 Information

Bayesian probability theory represents information about a given system by means of a probability density
function (“pdf”) over that system’s state space. Intuitively speaking, a probability distribution with one or
more sharp peaks contains more information on the state than one in which the probability mass is more evenly
spread out. Good [13] used a coordinate-free way to capture this qualitative intuition about information in
a quantitative measure, i.e., a set of numbers and/or real functions (Subsection 2.4.1). These are probability
distributions (Section 2.4.2), of which the Gaussian distributions (Section 2.4.3) are the best-known example.
Good’s approach leads to the global, scalar measures of Shannon entropy (Section 2.4.4) and relative entropy
(Section 2.4.5), and the local, matrix measure of the Fisher information (Section 2.4.6).

2.4.1 Foundations of information

Let’s formally denote the information about model M that can be derived from the information E, and given the
“background” (“context”) information C by the notation I(M :E|C). Good [13] proposed the following structural
properties for I(M :E|C):

1. I(M :E AND F |C) = f{I(M :E|C), I(M :F |E AND C)}.
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2. I(M :E AND M |C) = I(M |C). If one knows already everything about M , other information cannot add
anything anymore.

3. I(M :E|C) is a strictly increasing function of its arguments: if the information content of one of the param-
eters of I increases, the information I increases too.

4. I(M1 AND M2:M1|C) = I(M1:M1|C) if M1 and M2 are mutually irrelevant pieces of information.

5. I(M1 AND M2|M1 AND C) = I(M2|C). Considering the information contained in M1 doesn’t increase the
total information if this information was already incorporated.

Good found that these specifications lead to many alternatives for the representation of information. However,
he also proved that, if information I(M |C) is represented by a measurable function1 p(M |C), then composition
of information becomes additive if and only if I is any function of log(p). The simplest choice being, of course,
I = log(p). Hence:

• Probability distributions are those measurable functions that are arbitrarily normalized to have a unit area
under their curve. So probability distributions are a natural choice to represent information (or, at the same
time, uncertainty, which is the (partial) lack of information). And Gaussian distributions have become very
popular, because of their attractive computational properties (Sect. 2.4.3).

• The choice I = log(p) is the rationale behind the abundance of logarithms in statistics (for example in the
information measures discussed in the following Subsections), because addition is the natural operator on
the space of these logarithms.

The logarithm of a probability distribution is in general not representable by a small set of real numbers. Hence,
several derived scalar or matrix measures have been developed over the years. The following Subsections discuss
three of them: Shannon entropy, Kullback and Leibler’s relative entropy, and the Fisher Information matrix. But
first, the next Subsections summarize the properties of (Gaussian) probability distributions.

x1 x2 x3 x5 x6 x7
p6p5p4p1 p2 x4 p7p3 x

p(x)
Figure 2.2: Examples of discrete and continuous probability distributions.

2.4.2 Probability distributions

This text follows a model-based approach to “spatial” robotics. Hence, the geometric and/or physical parameters
of the robot, its sensors, its tools, the objects in the environment, the relative positions and orientations of objects,

1Loosely speaking, this means that calculation of information requires no involved mathematical technicalities.
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their relative velocities, the physical forces acting on some of them, etc., are the basic building blocks to represent
knowledge. Representing uncertainty in this parameter-based approach is quite straightforward: the value of a
parameter is not exactly known but given by a probability distribution. Figure 2.2 gives examples of discrete
probabilities, and of a continuous probability distribution (also called a probability density function (“pdf”), or
probability densities for short). The interpretation of these probability distributions is exactly as in classical
statistics:

1. Discrete case: the sum of the probabilities assigned to different values is the probability that the exact value
of the parameter is one of these different values.

2. Continuous case: the integral of the probabilities lying in a given range is the probability that the exact
value of the parameter lies in this range.

The paragraphs above discussed the case of a parameter in a geometric or physical model. In that case
it is straightforward to assume that the parameter could take a value in a (continuous or discrete) range of
possible alternatives. The case of propositions is a bit less obvious: what would be the interpretation of a
probability distribution on the statement that “I’m 80% sure that this door is the exit to the secretary”? The
(still controversial!) answer is given by the concept of a second-order probability distribution, [5, 31]: the mean
value of the distribution lies at 0.8, and the spreading of the distribution is a measure for how uncertain one is
about that probabilty value “0.8.” For example, one could have come up with the probability just as the result
of a guess (large spread in the distribution), or, on the other hand, as the result of consulting a map and having
found a large number of corresponding “landmarks” (low spread).

The discrete and continuous cases do not just differ in the words “sum” and “integral” used in their interpre-
tation given in the previous Section. Taking the integral of a fuction f(x) over a subset A of a parameter space
involves the product of two things, (i) the parameter values f(x) and (ii) the measure dx of the parameter space:

∫

A

f(x) dx. (2.1)

That measure dx represents the “parameter density” at the given subset, i.e., the amount (“mass”) of parameters
contained around x. Measures are not just used for notational purposes (i.e., to denote the variables over which
to integrate), but they are examples of so-called differential forms. An n-dimensional differential form maps
n tangent vectors to a real number. The tangent vectors form the edges of a “parallellepipedum” of volume
in the parameter space; the result of applying the differential form on this parallellepipedum is the amount of
volume enclosed in it. Measures have their own transformation rules when changing the representation (change
of coordinates, change of physical units, etc.): changing the representation changes the coordinates of the tangent
vectors, and hence also the mathematical representation of the differential forms should change, in order to keep
the enclosed volume invariant. An invariant measure puts structure on the parameter space. It can also be
interpreted as the generalized form of a uniform probability distribution: with this distribution, each unit of
volume in parameter space is equally probable.

The concept of an invariant measure is important for parameter spaces that are fundamentally different from
R

n, i.e., that have a different structure than R
n, even though they may have n real numbers as coordinates. The

best-known example is probably the measure used to calculate the surface integral over a sphere: depending on
whether one uses Cartesian x, y, and z coordinates, or spherical r and θ coordinates, the measure changes, [42]:

∫

A

{f(x, y, z)} {dx dy dz} =

∫

A

{f(r, θ, φ)} {r dr sin(θ)dθ dφ} . (2.2)
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Figure 2.3: Gaussian probability distributions, with mean 0 and different standard deviations σ.

2.4.3 Gaussian probability distribution

A general probability distribution as in Fig. 2.2 has a quite arbitrary shape, and hence one needs a lot of
parameters to represent it. The special class of Gaussian probability distributions needs only two parameters:
the mean µ and the standard deviation σ, Fig. 2.3. Gaussian distributions have a lot of interesting properties
from a computational point of view, which will become clear in the following Sections. A Gaussian distribution
is symmetric around its mean; a larger standard deviation implies more uncertainty about the mean. Gaussians
are often also called normal distributions, and are denoted by N (µ, σ). The mathematical representation of a
Gaussian with mean µ and standard deviation σ is:

N (µ, σ) =
1√
2πσ

exp

{
− (x − µ)2

2σ2

}
. (2.3)

σ2 is called the covariance of the distribution. The Gaussian distributions above are univariate distributions, i.e.,
they are function of one single parameter x. Their multivariate generalizations have the form

N (µ,P ) =
1√

(2π)n ||P ||1/2
exp

{
−1

2
(x − µ)T P−1(x − µ)

}
. (2.4)

x is an n-dimensional vector, µ is the vector of the mean (first moment, or “expected value”) of x:

µ =

∫ ∞

−∞

dx1 . . .

∫ ∞

−∞

dxn {x p(x|µ,P )} . (2.5)
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||P || is the two-norm (i.e., the square root of the largest eigenvalue of P T P , [12]) of the second moment, or
covariance matrix P :

P =

∫ ∞

−∞

dx1 . . .

∫ ∞

−∞

dxn

{
(x − µ)(x − µ)T p(a|µ,P )

}
. (2.6)

Note that the term (x − µ)(x − µ)T in the above equation is a matrix, while the term (x − µ)T P−1(x − µ) in
Eq. (2.4) is a number. It can be shown that this number has all properties of a distance on the parameter space
of x; in other words, the inverse of the covariance matrix P is a metric on that space, [34], and hence determines
structure on the space.

2.4.4 Shannon entropy

Claude Elwood Shannon (1916–), [6, 40, 41], presented a scalar “average” (or “expected”) measure to quantify
the quality of communication channels, i.e., their capacity to transmit information. However, his measure also
qualifies as a fully general information measure, as was first explained by Jaynes [14]. Shannon’s measure is
known under the name of entropy, because it models the similar concept with the same name in thermodynamics:
the higher the entropy of a thermodynamic system, the higher our uncertainty about the state of the system, or,
in other words, the higher its “disorder.” Note that entropy is a “subjective” feature of the system: it represents
the knowledge (or uncertainty) that the observer has of the system, but it is not a physical property of the system
itself. However, it is “objective” in the sense that each observer comes to the same conclusion when given the
same information.

The following paragraphs discuss only discrete probability distributions, since they are more intuitive than
continuous distributions. Assume the parameter x takes one of the values from a set {x1, . . . , xn}, with p(x) =
{p1, . . . , pn} the corresponding probability distribution. The entropy H(p) of the probability distribution p(x) is
derived from the following three desiderata:

Axioms for entropy
I H is a continuous function of p.

II If all n probabilities pi are equal (and hence equal to 1/n, because
they have to sum to 1), the entropy H(1/n, . . . , 1/n) is a monoton-
ically increasing function of n.

III H is an invariant, i.e., the uncertainty should not depend on how
one orders or groups the elements xi.

The first and second specifications model our intuition that (i) small changes in probability imply only small
changes in entropy, and (ii) our uncertainty about the exact value of a parameter increases when it is a member of
a larger group. The third desideratum is represented mathematiclly as follows: the entropy H obeys the following
additive composition law :

H(p1, . . . , pn) =H(w1, w2, . . . ) (2.7)

+ w1H(p1|w1, . . . , pk|w1)

+ w2H(pk+1|w2, . . . , pk+m|w2) + . . . ,

here w1 is the probability of the set {x1, . . . , xk}, w2 is the probability of the set {xk+1, . . . , xk+m}, and so on;
pi|wj is the probability of the alternative xi if one knows that the parameter x comes from the set that has
probability wj . For example, assume that x comes from a set of three members, with the alternatives occurring
with probabilities 1/2, 1/3 and 1/6, respectively. If one then groups the second and third alternatives together
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(i.e., w1 = p1 = 1/2, the probability of the set {x1}, and w2 = p2 + p3 = 1/3 + 1/6 = 1/2, the probability of the
set {x2, x3}), the composition law gives H(1/2, 1/3, 1/6) = H(1/2, 1/2)+ 1

2H(2/3, 1/3) since 2/3 and 1/3 are the
probabilities of x2 and x3 within the set {x2, x3}.

The three above-mentioned axioms suffice to derive an analytical expression for the entropy function H(p).
The first axiom implies that it is sufficient to determine H(p) for rational values pi = ni/

∑n
j=1 nj (with nj integer

numbers) only; the reason is that the rational numbers are a dense subset of the real numbers. One then uses the
composition law to find that H(p) can be found from the uniform probability distribution P = (1/N, . . . , 1/N)
over N =

∑n
i=1 ni alternatives. Indeed, the composition law says that the entropy H(p) is equal to the entropy

H(P ), because in P one can group the first n1 alternatives, the following n2 alternatives, and so on, which reduces
to the original distribution. For example, let n = 3 and (n1, n2, n3) = (3, 4, 2) such that N = 3 + 4 + 2 = 9;
denoting H(1/N, . . . , 1/N) by H(N) yields

H

(
3

9
,
4

9
,
2

9

)
+

3

9
H(3) +

4

9
H(4) +

2

9
H(2) = H(9).

In general, this could be written as

H(p1, . . . , pn) +
∑

piH(ni) = H
(∑

ni

)
. (2.8)

The special case of all ni equal to the same integer m gives

H(n) + H(m) = H(mn).

A solution to this equation is given by H(n) = K ln(n), with K > 0 because of the monotonicity rule. All this
yields the following expression for the entropy:

H(p1, . . . , pn) = K ln
(∑

ni

)
− K

∑
pi ln(ni),

or:

Fact-to-Remember 1 (Entropy of a probability distribution)

H(p1, . . . , pn) = −K
∑

pi ln(pi). (2.9)

The minus sign makes that entropy increases when uncertainty increases. The constant K has no influence: it
is nothing but a factor that sets the scale of the entropy. The entropy need not be a monotonically decreasing
function of the amount of information received: entropy can increase with new information (“evidence”) coming
in, if this new information contradicts the previous assumptions. Note also that the uncertainty in many dynamic
systems increases naturally over the time period that no new information is received from the system: the
probability distributions “flatten out” and hence the entropy increases.

2.4.5 Kullback-Leibler divergence

Equation (2.9) suggests that the entropy for a continuous probability distribution is H (p(x)) = −K
∫

p(x)
ln (p(x)) dx. However, this extrapolation neglects the important difference between discrete and continuous dis-
tributions: the probability mass enclosed in an interval does not only depend on the magnitude of the probability
distribution in that interval, but also on the amount of parameter “volume” in that interval. The only way to get
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an entropy that is invariant is to consider the relative entropy of two probability distributions, here represented
by the densities p(x) and m(x) over the same measure dx:

H
(
p(x):m(x)

)
= −

∫
log

(
p(x)

m(x)

)
p(x)dx. (2.10)

This scalar was called the Kullback-Leibler divergence, (after the duo that first presented it, [18], [19]), or also
mutual entropy, or cross entropy, of both probability measures p(x) and m(x), [18, 35]. It is a (coordinate-
independent) measure for how much information one needs to go from the probability distribution m(x) to the
probability distribution p(x). As Shannon’s entropy, H

(
p(x):m(x)

)
is a global measure, since all information

contributions log(p(x)/m(x)) are weighted by p(x)dx, and then added together.

2.4.6 Fisher Information

The relative entropy H
(
p(x):m(x)

)
of Eq. (2.10) is not a metric, since it is not symmetric in its arguments:

H
(
p(x):m(x)

)
6= H

(
m(x):p(x)

)
. Rao [34] was the first to come up with a real metric on a manifold MΣ of

probability distributions p(x,Σ) over the state space x and described by a parameter vector Σ = {σ1, . . . , σn}.
Define tangent vectors v = (v1, . . . , vn) to the manifold MΣ as follows:

v(x,Σ) =
n∑

i=1

vi ∂l(x,Σ)

∂σi
, with l(x,Σ) = log

(
p(x,Σ)

)
. (2.11)

The vi are the coordinates of the tangent vector in the basis formed by the tangent vectors of the logarithms of
the σ-coordinates. (Section 2.4.1 explains why these logarithms show up all the time in statistics.) A metric M
at the point p (which is a probability distribution) is a bilinear mapping that gives a real number when applied
to two (logarithmic) tangent vectors v and w attached to p. Rao showed that the covariance of both vectors
satisfies all properties of a metric. Hence, the elements gij of the matrix representing the metric are found from
the covariance of the coordinate tangent vectors:

gij(Σ) =

∫ (
∂il(x,Σ)

)(
∂j l(x,Σ)

)
p(x,Σ) dx. (2.12)

The matrix gij got the name Fisher information matrix. The covariance “integrates out” the dependency on the
state space coordinates x, hence the metric is only a function of the statistical coordinates Σ. This metric is
defined on the tangent space to the manifold MΣ of the σ-parameterized family of probability distributions over
the x-parameterized state space X .

Kullback and Leibler already proved the following relationship between the relative entropy of two “infinitely
separated” probability distributions Σ and Σ + ǫv on the one hand, and the Fisher Information matrix gij(Σ) on
the other hand:

H(Σ:Σ + ǫv) =
1

2

∑

i,j

gij(Σ)vivj + O(ǫ2). (2.13)

Hence, Fisher Information represents the local behaviour of the relative entropy: it indicates the rate of change
in information in a given direction of the probability manifold (not in a given direction of the state space!).

2.5 Bayesian probability theory

The previous Section discussed properties of information, and indicated that probability density functions are
“natural” representations for information. Good’s approach does not say how to “calculate” with information,
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i.e., how to combine the information from different sources, or from the same source but collected at different time
instants. This is the area of probability theory. This theory has many historical roots, and many approaches exist to
explain its fundamental mathematical properties. The approach developed by Cox [7], and later refined by Jaynes
[14], [15], [36] fits nicely into the information-based approach to inference presented in previous Sections. Cox and
Jaynes looked at probability theory as the theory of how to deal with uncertain statements and hypotheses, and
not as the more classical theory describing frequencies of random events. The former approach is currently known
as Bayesian probability theory (e.g., [17]), in contrast to the latter “orthodox statistics” à la Fisher, [10]. Cox
[7] starts from only three functional relationships to describe the structure that operations in uncertain reasoning
should obey:

1. What we know about two statements A and B should be a smooth function of (i) what we know about A,
and (ii) what we know about B given that A is taken for granted. In functional form this becomes:

p(A,B) = f
{
p(A), p(B|A)

}
, (2.14)

with p(A) the probability of proposition A, p(B|A) the conditional proposition of B given A, and f an as
yet unspecified function. (This is the same starting point as Good’s reasoning that led to the definition of
information.) p(A) can be a continuous probability distribution function (instead of a single number), for
example if it represents the value of a parameter in the system under study. Cox then proves that relation
(2.14) leads to the following form for f :

f
{
p(A), p(B|A)

}
= f

{
p(A)

}m
f
{
p(B|A)

}m
, (2.15)

for an arbitrary m and an arbitrary f . Hence, it turns out that the historical literature in statistics had
already fixed the choices m = 1 and f(u) = u, not out of necessity but most probably just for computational
convenience.

2. The negation of the negation of a proposition A is equal to the proposition A. This means that a function
g must exist such that:

g

(
g
(
p(A)

))
= p(A). (2.16)

3. The same function g should also satisfy the following law of logic:

g
(
p(A OR B)

)
= g

(
p(A)

)
AND g

(
p(B)

)
. (2.17)

These structural prescriptions are sufficient to derive the product rule p(A AND B|M) = p(A|M)p(B|A AND M),
and the additivity to one, p(A) + p(NOT A) = 1. (M represents all available knowledge (“models”) used in the
inference procedure.)

Jaynes builds further on the approach by Cox, and states some assumptions (e.g., invariance) a bit more
explicitly. In his unfinished manuscript [15], the basic rules of plausible reasoning are formulated as follows:

Axioms for plausible Bayesian inference
I Degrees of plausibility are represented by real numbers.

II Qualitative correspondence with common sense.
III If a conclusion can be reasoned out in more than one way, then every

possible way must lead to the same result.
IV Always take into account all of the evidence one has.
V Always represent equivalent states of knowledge by equivalent plau-

sibility assignments.
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These “axioms” are not accepted without discussion, e.g., [11, p. 241]:

• Assigning equivalent probabilities for equivalent states seems to assume that the modeller has “absolute
knowledge,” since one often doesn’t know that states are equivalent.

• Many people state that representing probability by one single real number is not always possible or desirable.

It can be proved, [7, 15], in a way again very similar to the proof given for the entropy desiderata, that the
above-mentioned axioms lead to the following well-known probability rules:

Bayesian calculus

Sum rule
p(x + y|H) = p(x|H) + p(y|H). (2.18)

Product rule
p(xy|H) = p(x|yH)p(y|H). (2.19)

Bayes’ rule

p(Model|Data,H) =
p(Data|Model,H)

p(Data|H)
p(Model|H). (2.20)

Bayes’ rule follows straightforwardly from the product rule, since that rule is symmetric in both its arguments.
Equation (2.20) suggestively uses the names “Data” and “Model,” since this is the contents of these variables in
many robotics inference problems. The most important thing to notice is that

Fact-to-Remember 2 (Bayes’ rule represents model-based learning)
It expresses the probability of the Model, given the Data (and the background information
H), as a function of (i) the probability of the Data when the Model is assumed to be known,
and (ii) the probability of that Model given the background information.

The denominator in Bayes’ rule is usually regarded as just a normalization constant, [24, p. 105]; it is independent
of the Model, and predicts the Data given only the prior information. The term p(Model|Data,H) is called the
posterior probability ; p(Data|Model,H)/p(Data|H) is the likelihood ; and p(Model|H) is the prior probability of the
hypothesis. The likelihood is not a probability distribution in itself; as the ration of two probability distributions
with values between 0 and 1 it can have any positive real value.

Bayesian probability theory gives an axiomatically founded treatment of all structures and concepts needed
in reasoning with uncertainty; that’s why it is presented in this text. Classical (“orthodox”) statistics gives
some shortcuts for particular problems; this is convenient for specific implementations (such as many parameter
identification applications) but it is seldom easy and intuitive to know what shortcuts are used in a given robotics
task.

2.5.1 Optimality of information processing

The reasoning in Section 2.4.1 also allows to interpret Bayes’ rule as a procedure to combine information from
two sources without loss of information: the first source is the prior information already contained in the current

22



state, and the second source is the new information added by the current measurement. This relationship is
straightforward: take Bayes’ rule for two models M1 and M2 that receive the same new Data:

p(M1|Data) =
p(Data|M1)

p(Data)
p(M1),

p(M2|Data) =
p(Data|M2)

p(Data)
p(M2).

Taking the logarithms of the ratio of both relationships yields

log
p(M1|Data)

p(M2|Data)
= log

p(Data|M1)

p(Data|M2)
+ log

p(M1)

p(M2)
. (2.21)

The left-hand side is the information after the measurement; the right-hand side represents the information
contributions of both sources. Hence, information “before” is equal to information “after” and Bayes’ rule is
optimal in this respect, [46].

2.5.2 Estimation—Hypothesis testing

Bayes’ rule is the general basis underlying, for example, parameter estimation and hypothesis testing. But the
literature describes many specific estimators, as special cases of Bayes’ rule:

Maximum Likelihood (ML) : the maximum (“mode”) of the likelihood function.

Maximum A Posteriori (MAP) : the mode of the posterior probability.

Least Squares (LS) : the minimum of the “squared error function,” i.e., the function (x̂−x)T (x̂−x). It seems
at first sight that this estimator involves no probability distributions on the parameter(s) x; but the squared
error is proportional to the exponent of a Gaussian distribution with equal covariance in all parameters,
which are independent; hence their maxima coincide.

Some of these estimators become equivalent in special cases:

• ML = MAP if the prior is noninformative, i.e., “flat.”

• LS = ML, for indentically distributed and independent (“iid”), symmetric and zero mean distributions.

Another interesting property is that Bayes’ rule with Gaussian distributions as inputs gives a Gaussian distribution
as posterior, [23, p. 7]. Hence, using Gaussians to represent uncertainty reduces the computational complexity of
the software enormously. Some less interesting properties are:

• General probability distributions require a lot of computing power.

• Although Bayes’ rule is a consistent and fundamental way to perform inference, its results are only as good
as its input. For example, if the Data comes from a sensor that has a systematic error, there is no way
Bayes’ rule can compensate for this, without having a model of the error available.

• MAP estimates do not have any fundamental status: MAP finds the maximum in the probability distribution,
but does not take into account the “volume” (“invariant measure”) of the parameter space over which the
maximum is found. What matters is the probability “mass,” i.e., the product of “volume” and “probability
measure,” [25]. Hence, the MAP can depend on the chosen coordinate representation.
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Hypothesis tests Hypothesis tests are, in fact, the same things as parameter estimators, [24, p. 104]: estimating
a parameter to have a certain value is the same problem as testing the hypothesis that it has that value against
the hypotheses that it has other values. The mathematical formulation follows from dividing two instantiations
of Bayes’ rule—Eq. (2.20)—with two models “Model1” and “Model2”:

p(Model1|Data,H)

p(Model2|Data,H)
=

p(Data|Model1,H)

p(Data|Model2,H)

p(Model1|H)

p(Model2|H)
. (2.22)

Hence, the relative probability of two hypotheses not only depends on how well they predict the Data (i.e., the
first term on the right-hand side; more complex models always fit the data better), but also on how complex the
models are: the second term on the right-hand side is larger than 1 if Model1 is simpler than Model2, because
simpler models have larger entropy and hence more probability to occur. This principle is often called Occam’s
razor, after (the Latin name of) the Englishman William of Ockham (1288–1348), who got famous (long after
his death!) for his quotations “Frustra fit per plura, quod fieri potest per pauciora (It is vain to do with more
what can be done with less) and “Essentia non sunt multiplicanda praeter necessitatem” (Entities should not be
multiplied unnecessarily).

State estimation

The concept of a state (with and without “hidden” paramaters) is very important in robotics, and hence state
estimation algorithms have been and still are a major research area. The literature describes three main classes
of algorithms:

1. The Kalman Filter for on-line parameter estimation, e.g. [2, 16, 26], and its off-line cousin weighted least-
squares. [28] shows how the Kalman Filter, Fig. 2.4, follows from Bayes’ rule, when the system under
consideration is linear, and the probability distributions are Gaussians.

2. The Hidden Markov Model (HMM) for pattern recognition, e.g., [3, 33]. A HMM models the discrete
transitions (“jumps”) between states in a finite state machine, and assigns probabilities to the transitions.

3. The EM algorithm for model building, e.g. [8, 27]. It is similar to the Kalman Filter, but much more general:
the system can have nonlinear state space, and also the probabilities can be more general, i.e., non-Gaussian.

These algorithms estimate the parameters of a model iteratively, starting from some initial guess; the Kalman
Filter is designed to work in real-time, on time-varying Markov systems, while the EM algorithm can handle more
complicated and non-Markov inference problems, but needs more time and hence is not very appropriate to track
time-varying systems. The complexity and properties of the HMM are somewhere in between. Each iteration
consists of:

1. A Prediction/Expectation step, that finds the distributions of the unobserved states, given the known val-
ues for the observed states and he current estimate of the parameters. For time-varying systems, the
“unobserved” parameters include the (observable and unobservable) parameters that undergo a stochastic
time-variance.

2. A Correction/Maximization step, that re-estimates the parameters to those with maximum likelihood, under
the assumption that he distribution found in the P/E step is correct. This step can be done efficiently in
the Kalman Filter because it assumes that all uncertainties are represented by Gaussian distributions.

References for this Chapter
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Figure 2.4: Computational scheme of the Kalman Filter, [2].
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Chapter 3

Geometry of motion

3.1 Introduction

Robots are in the first place positioning devices that move rigid bodies around in all possible directions. Hence,
good knowledge about the structure of rigid body positions and orientations is an important prerequisite for any
intelligent robot controller. This Chapter introduces all relevant properties without using a coordinate represen-
tation. (Of course, some mathematical notation will be used to describe the physical model.) This discussion
requires only a small amount of time and space, but it covers all basic properties that are needed in the rest of
the book. A coordinate-free description, however, is not sufficient if one really wants to work with robots, instead
of just describing their properties. In other words, coordinate representations are indispensable to implement
the model in computer programs. Hence, the following Chapters describe the coordinate representations that are
most commonly used in robotics, and compare their advantages and disadvantages.

Fact-to-Remember 3 (Basic ideas of this Chapter)
Extracting the properties of rigid body motion from everyday experience has taken mankind
several hundreds of years. The major reason is that motions of rigid bodies obey fundamen-
tally different properties than motions of points, i.e., the structure of rigid body motion is
that of a curved space.

3.2 Rigid body motion

There is one very important complication about rigid bodies that makes them a bit more tedious than points in
the Euclidean, three-dimensional space (denoted E3): the geometry of rigid body motion is the geometry of frames
in E3, since the pose (i.e., position and orientation) of a rigid body is uniquely defined by the pose of a reference
frame attached to the rigid body. This space of frames does not have the geometry of the familiar Euclidean
space, mainly due to the fact that rotations and translations do not commute, i.e., executing a translation first
and then a rotation yields a different motion than executing the rotation first. This Chapter tries to capture these
essential properties of rigid body motion, without using coordinate representations. This is important for two
reasons: (i) a given coordinate representation is only acceptable if it has these properties; and (ii) every extra
mathematical property that the coordinate representation might suggest has no physical meaning. At this point
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it might be difficult to grasp the full meaning of these statements. But the rest of the book will be much easier
to digest if you look back at these paragraphs from time to time. So, the message of this Chapter is important
enough to be repeated in a

Fact-to-Remember 4 (Rigid body motion and coordinates)
Every possible coordinate representation of rigid body motion has to have the properties
presented in this Chapter.
Every extra mathematical property that a possible coordinate representation might have has
no meaning in the context of rigid body motion.

“Motion” stands for displacement, velocity and acceleration. Displacement analysis looks at the properties of the
rigid body “mapping” from an initial pose to a final pose, without taking into account how the body has actually
made the move. Velocity analysis looks at the local (also called first order, or instantaneous) properties of these
transformations, i.e., when final and initial positions are “infinitesimally” separated, both in time and in space.
Acceleration analysis looks at the second-order properties of the motion.

Velocity and acceleration. Everybody knows what the velocity and acceleration of a point in E3 mean: they
are the three-vectors that represent the first and second-order time derivatives of the point’s position three-vector.
But what are the velocity and the acceleration of a rigid body? Are they the time derivatives of any position
representation? The answer to this seemingly trivial question is “No”! (See the following Chapters for the details.)
So, we define the velocity and acceleration of a rigid body as follows:

Definition 1 (Rigid body velocity and acceleration) The velocity and acceleration of a moving rigid body
are given by any set of parameters that allow to find the velocity and acceleration of any point moving together
with the rigid body.

This definition probably only becomes clear in the following Chapters. For the time being, just remember that
the motion of a moving rigid body is not a trivial extension of a moving point.

3.3 SE(3): the Lie group of displacements

This Section deals with (finite) displacements of rigid bodies. Imagine a rigid body B somewhere in the space
around you. For the sake of simplicity, assume B is a cube. Move it from its current pose L to any other pose K
you choose; then move it further to still another pose J . Observe that

1. The motion of B from L to K is continuous. That means that it could be broken up in arbitrarily small
sub-motions.

2. Moving B from L to K, and then further to J , gives the same result as moving it from L “directly” to J
(“transitivity”)

Now translate B over a certain distance in the direction of one of its own edges (let’s call this edge e1). Then
rotate B over a certain angle about one of its other edges (let’s call this edge e2). Start all over again, but change
the sequence of motions: first rotate about e2, then translate along e1. Observe that

3. Rotations and translations do not commute.

Some properties you can test only in your mind, but nobody will contest that

4. All possible poses of B can be reached from any given initial pose.
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5. All possible poses of B can be reached by combining translations along, and rotations about, three non-parallel
edges of the object. One says that a rigid body has six degrees of freedom.

6. No initial pose has any special properties provided that the ambient space is completely empty. In other
words, there is no natural “origin.”

These coordinate-independent properties correspond to the mathematical concept of a Lie group, [21, 28, 33].
These continuous groups were first studied in great detail by the Norwegian mathematician Sophus Lie (1842–
1899), [22], in his research on differential equations. The Lie group of rigid body displacements is called SE(3): the
Special Euclidean group in three dimensions. It represents orientation- and distance-preserving transformations in
E3. “Distance-preserving” means that a displacement of a rigid body does not change the distances between any
two of its points. “Orientation-preserving” means that a right-handed reference frame on a rigid body remains
a right-handed reference frame, irrespective of what displacement is applied to the rigid body. This is obvious
for rigid body displacements, but transformations exist in E3 that do change the handedness of any reference
frame without violating the distance constraints; for example, mirroring through a plane. The keyword “Special”
distinguishes between both cases. Note the following important differences between E3 (the “space of points”)
and SE(3) (the “space of frames”) :

Fact-to-Remember 5 (E3 vs. SE(3))
E3 is a three-dimensional space, while SE(3) is six-dimensional. A point in SE(3) corre-

sponds to a frame in E3.

Algebraic properties. This paragraph transforms the qualitative discussion of the previous paragraph into
a formal, algebraic description. A Lie group has two basic properties: it’s an algebraic group, and its group
operation is continuous, [34, 35, 8, 17, 21]. Hence, the composition of elements in a Lie group has the following
properties:

• The composition of a displacement g with a a displacement h is again a a displacement:

∀g, h ∈ SE(3) : g ◦ h ∈ SE(3), and h ◦ g ∈ SE(3). (3.1)

We often use the shorthand “multiplicative” notation gh to denote the group composition operation g ◦ h,
i.e., first execute h and then g.

• The composition of displacements is a continuous operation, i.e., it can be subdivided in arbitrary small
components, that each are displacements themselves.

• The composition of displacements is associative:

∀g, h, l ∈ SE(3) : (g ◦ h) ◦ l = g ◦ (h ◦ l). (3.2)

• Not moving at all is also a displacement, called the identity element e, or the neutral element, in the group.

• Each displacement has an inverse:

∀g ∈ SE(3),∃h ∈ SE(3) : g ◦ h = e = h ◦ g. (3.3)

This inverse is denoted by the classical multiplicative inverse: h = g−1.

• The composition of displacements is, in general, not commutative:

∃g, h ∈ SE(3) : gh 6= hg. (3.4)

Note that some displacements do commute; for example: two translations; or two rotations about the same
axis: or the composition of any displacement with the identity or with its inverse displacement.
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The manifold of rigid body motions. Besides being a continuous group, the space of rigid body displace-
ments has another important structural property: SE(3) is a manifold. This means that locally it looks like the
six-dimensional Euclidean space R

6: one can use six real numbers to represent displacements, and these coordi-
nate representations are smooth, i.e., their derivatives of all orders are continuous. The emphasis above is on the
word “locally.” Indeed, it is not difficult to see that SE(3) is not globally identical to R

6:

1. A rigid body moving with a constant pure angular velocity will return to its original pose; applying a constant
velocity to a point in R

6 will never bring it back to where it started.

2. R
6 is a vector space; SE(3) is not. In a vector space, the following property holds: λO(a, b) = O(λa, λb),

where O denotes the composition operation in the space. Recall that the composition of displacements is a
“multiplicative” operation, hence “λg” (λ ∈ R, g ∈ SE(3)) in the sense of applying g a number λ of times, is
actually gλ = g g . . . g. Hence, a counterexample proving that SE(3) is not a vector space is easily constructed:
imagine moving the rigid body along a helical staircase, one floor up (this is the motion “h”). Then turn it
upside down (this is the motion “g”); don’t forget to turn the “upward” direction of the staircase too, i.e.,
this direction is connected to the moving body, and not to the world. Take λ = 2. Then λO(g, h) = (gh)(gh)
brings the body back to its initial pose, while O(λg, λh) = gghh brings it to the second floor, in upright
position.

In fact, SE(3) is an example of a curved space. This implies that in order to properly describe SE(3) one
needs exactly the same tools from differential geometry as needed for the description of the curved space-time
of Einstein’s general relativity! This book will not take this route, since this “omission” will not compromise
the validity of the presented material. If, however, after digesting this book you have become interested in more
advanced robotics topics, (such as nonlinear control, higher-order robot kinematics, optimal and non-holonomic
motion planning, etc.), you will certainly benefit from a bit more differential geometry, starting with textbooks
that are quite accessible to engineers, e.g., [5, 20, 26, 29, 34, 35, 36]. Anyway, you should at least get the following
message from this Section:

Fact-to-Remember 6 (SE(3) is a curved space)
And hence some of the familiar properties of flat Euclidean space do not hold: orthogonality,
straight line, etc.

3.4 se(3): the Lie algebra of velocities

This Section treats velocities in a coordinate-independent way. The literature often uses alternative terms for
velocity analysis, such as instantaneous kinematics, or first-order kinematics, especially if also the second-order
(or acceleration) analysis of the body’s motion is discussed.

Tangent space at the identity. Imagine a rigid body at rest in a given position and orientation in space.
(Remember that the pose of a rigid body is a point on the manifold SE(3).) Now attach reference frames to all
points of the rigid body, even to points that lie outside of the body but are thought to be rigidly connected to
it. Different frames connected to the same point on the body correspond to different points in SE(3). So do any
two frames connected to different points of the body. Now pick one of these frames. Without loss of generality,
this frame can be chosen as the identity element “e” of SE(3). When moving the body, the picked frame moves
together with the body. Call g(t) the frame’s motion over time; this g(t) is also a curve on the manifold SE(3).
Assume that at time t = 0, the body is at the identity element e = g(0). Then ∂g/∂t|t=0 is the tangent vector to
the curve g(t) at the identity element of the manifold. Similarly, one can trace all possible motions of the body
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through the identity element and construct their tangent vectors. All these tangent vectors span the tangent space
to the manifold at the identity. Mathematicians have given this tangent space at the identity element a special
name: “se(3),” [34, 35]. In other words, se(3) is the space of all possible velocities of that particular reference
frame on the rigid body that instantaneously coincides with the chosen world reference frame. Note that any
frame on the rigid body could have served as world reference frame, or, equivalenty, as identity element of SE(3).

Tangent bundle. The above-mentioned process of constructing tangent spaces is exactly similar to constructing
the tangent space to a curved surface in E3. The space of rigid body motions, however, is six-dimensional, and
not three-dimensional like E3. What was done for the particular frame chosen above can be repeated for any
other frame on the moving body: define the local tangent space as the set of tangent vectors to all possible curves
through the frame. This set of all tangent spaces at all points is called the tangent bundle.

Identification of tangent spaces. Since all frames fixed to a moving rigid body do not move with respect to
each other, the time derivative of a frame that is not instantaneously at the identity contains the same information
as the time derivative of that frame that is instantaneously at the identity. Since SE(3) is not a flat Euclidean
space, Fact 6, it is not obvious how to compare and/or add tangent vectors at different points on the manifold.
For example, try to imagine how you would add a vector tangent to the earth surface at the north pole to a
vector tangent to the earth surface at the south pole. This kind of operation requires a rule of parallel transport
between the tangent spaces at both points, e.g., [5, 35]. Another name for the same concept is identification of
both tangent spaces, i.e., a rule that says what tangent vector in the first space corresponds to a given tangent
vector in the second space. For SE(3), as well as for the earth surface, there is no unique (“natural,” “canonical”)
way to define such a rule. In any Lie group, however, at least one possible coordinate-independent rule of parallel
transport is always defined: left translation. This works as follows. Take a frame attached to the moving rigid
body, not at the identity displacement e, but at some arbitrary other element g of the manifold SE(3). This frame
at g also describes a curve over the manifold due to the motion of the rigid body. Each point on this curve in the
close vicinity of g can be mapped to a point in the close vicinity of the identity element e by pre-multiplication
(“left translation”) with g−1. (In a Lie group, this inverse of g is always well defined.) Now, the tangent vector to
this left-translated curve at the identity e is an element of se(3). Hence, the tangent vector at g has been uniquely
identified with a tangent vector at e. “Right translation” is defined in a completely similar way. However, the
left and right translations of the same tangent vector need not coincide.

Addition—Vector space. The following paragraphs compare the properties of rigid body displacements to
those of rigid body velocities at the identity. The major differences are:

1. Velocities compose in an additive way to yield new velocities, while displacements follow a multiplicative
composition rule.

2. The composition of velocities is a commutative operation.

3. There exists a natural origin: the zero velocity.

Hence, instantaneous velocities (at the identity element) of a moving rigid body have the algebraic properties of
a vector space: every linear combination of velocities is again a velocity: λ(v + w) = λv + λw. Recall that this
linearity property does not hold for finite displacements: (gh)λ 6= gλhλ.

Multiplication—Lie bracket. se(3) has even more algebraic structure than just that of a vector space: it is a
so-called algebra. An algebra is a space with two operations, [9] [16, p. 278]: “addition” and “multiplication.” The
space of all n×n matrices with addition and matrix multiplication is a well-known example. Multiplication of rigid
body velocities is much less intuitive than the above-mentioned addition, but the following example illustrates
the concept. Give the rigid body B a velocity in a certain direction e1 (this direction is determined with respect
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to the body itself), and move it during a short period of time; call this motion g. Then give it a velocity in a
different direction e2, and move it again during a short period; call this motion h. The third motion is the inverse
of the first one: move with the inverse velocity along e1. (Note that e1 has not changed with respect to the
body, but it has changed with respect to any world reference!). Finally, execute the inverse of the motion in the
direction e2. Figure 3.1 sketches this four-motion operation. This composition of four operations h−1g−1hg is the
commutator of the finite displacements g and h. In general, this commutator will not bring B back to its original
position and orientation. Now imagine that the motions g and h tend to infinitesimally small motions, or, in
other words, take the limit, for the time going to zero, of the commutator divided by the short time period during
which the motions are executed. This means that the infinitesimal displacements g and h become tangent vectors
to the trajectories, i.e., velocities v and w. Because of the limit process, these velocities apply at the “identity
element,” i.e., the undisplaced pose of the body B. Hence, the commutator above is called the Lie derivative or
Lie bracket, denoted by Lvw or [v, w], respectively. Hence, [v, w] is a mapping from two tangent vectors at the
identity element to a third vector at the identity element: [·, ·] : se(3) × se(3) → se(3) : v, w 7→ [v, w]. It has the
physical units of an acceleration. Any rule of parallel transport also transports the definition of the Lie bracket
from the tangent space at the identity to the tangent space at any other element g of SE(3): first transport the
two tangent vectors v and w to the identity; then apply the Lie bracket to these two transported tangent vectors;
bring the resulting tangent vector at the identity back to the original tangent space; and define this last vector
to be the Lie bracket of v and w. Note that the Lie bracket in the tangent space at the identity element of a
Lie group is an intrinsic feature of that Lie group; the Lie bracket at an arbitrary other element of the Lie group
depends on a rule of parallel transport. For example, left and right translation define different Lie brackets.

g h
g�1

h�1[g; h]
Figure 3.1: Commutator of two infinitesimal displacements.

Lie algebra. se(3) is not only a vector space under addition of velocities. It is also closed under the Lie bracket
operation (if one considers velocities and their brackets to lie in the same space!), and the Lie bracket operation
is distributive with respect to the addition of velocities: [v, w + x] = [v, w] + [v, x]. However, the rigid body Lie
bracket operation does not have a neutral element (i.e., a velocity that commutes with all other velocities). And
hence, also inverse elements are not defined. All these properties make se(3) into an algebra. Moreover, also the
following properties always hold, [34]:

1. The Lie bracket is continuous.

2. The Lie bracket is anti-symmetric:
[v, w] = −[w, v]. (3.5)

3. The Lie bracket satisfies the Jacobi identity, [9]:

[v, [w, x]] + [w, [x, v]] + [x, [v, w]] = 0. (3.6)
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The physical meaning of this Jacobi identity is not really obvious. Anyway, this property is not used in this
introductory book.

Hence, the algebra se(3) is a Lie algebra. The name of course reflects the close relationship with Lie groups; see
Section 3.5. History has chosen the adjective “Lie” instead of “Killing,” although the German mathematician
Wilhelm Karl Joseph Killing (1847–1923) introduced the Lie algebra concept independently of Lie in his study
of non-Euclidean geometry. The notations “SE(3)” for the Lie group of displacements and “se(3)” for the Lie
algebra of velocities at the identity respect the common practice of denoting Lie groups with capital letters and
their associated Lie algebras with small letters.

Fact-to-Remember 7 (SE(3) vs. se(3))

SE(3) is the group of finite displacements. Finite displacements compose multiplicatively,
and do, in general, not commute. se(3) is the vector space of velocities at the identity
displacement. These velocities can be added, which is a commutative operation. This
vector space is also endowed with the Lie bracket as non-commutative multiplication.

Distance measure. It is impossible to come up with a natural definition for the “length” of a rigid body
motion in SE(3), i.e., one which has the same universal validity as the Euclidean distance function (1.5) in E3,
[21, 24]. The problem is that there is no prescribed way to “weight” the contributions of translation and rotation.
Similarly, no natural “distance” between two elements of se(3) exists. This implies that many results derived on
the basis of distance functions depend on the chosen weight. One important example in robotics is data fitting :
one has measured a large sample of rigid body positions and orientations, and one now wants to find the “best”
fitting pose. This is usually performed by a least-squares method that finds the body pose whose “distance” to
all measurements is smallest. This result changes with a change in weight function in the distance calculations.

Fact-to-Remember 8 (Distance measure on SE(3) or se(3))
Neither SE(3) nor se(3) have a natural distance function (“metric”).

3.5 Exp and log: from se(3) to SE(3) and back

Obviously, the algebra se(3) of rigid body velocities at the identity and the group SE(3) of rigid body displacements
are closely related. One possible way to see this is by giving the body a certain constant velocity during one unit
of time. At the end of this time interval, the body is at a certain position and orientation. A different initial
velocity results in a different pose, and each pose can be reached by some velocity. (Actually, these mappings are
not globally one-to-one: for example, rotation of the body over an angle of α degrees or an angle of α + n× 360
degrees. We will not consider these “multiple coverings.”) The mapping from a velocity to a pose is called the
exponentiation or exponential of the velocity: exp : se(3) → SE(3). The inverse mapping from pose to velocity is
called the logarithm of the pose: log : SE(3) → se(3). It maps the pose to a velocity that generates this pose in one
unit of time. The names “exponential” and “logarithm” are no coincidence: as proven in a later Chapter, these
mapping correspond exactly to the familiar exponentiation and logarithm for matrix representations of poses and
velocities.
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3.6 SO(3) and so(3)

A general motion of a rigid body has translational as well as rotational components. The special subclass
of motions with one fixed point are the rigid body rotations. The rotational “displacements” form the three-
dimensional subgroup SO(3) of SE(3). The “O” stands for “Orthogonal,” and originates from the fact that
rotations can be represented by orthogonal matrices, Chap. 5.

SO(3) is also a Lie group, and its corresponding Lie algebra of angular velocities is denoted by so(3). The Lie
bracket on so(3) corresponds to the classical vector product.

The geometric and algebraic particularities of SE(3) are mainly consequences of the properties of the rotations;
translations of a rigid body are completely equivalent to the motions of a point in E3, with the simple vector space
R

3 as a faithful mathematical representation. Combining translations and rotations has one important property:
translations and rotations do not commute in general. Hence:

Fact-to-Remember 9 (SE(3) is not SO(3) ×R
3)

General rigid body motions cannot be decoupled into independent rotation and translation
components: composing the rotation and translation components of two rigid body motions
separately in SO(3) and R

3, respectively, and then combining the results does not give the
same motion as when the composition of the two motions is done in SE(3).

3.7 SE(2) and se(2)

Many practical problems do not require the full six-dimensional arena offered by SE(3), but are mainly “planar”
tasks. For example, moving a mobile robot over a factory floor; sorting packages on a conveyor belt; programming
many spray-painting jobs; laying bricks; assembling printed circuit boards, etc. Basically, these jobs rely on
displacements of a frame in a plane. These displacements have two translational degrees of freedom and one
rotational degree of freedom. The two corresponding algebraic spaces are the Lie group SE(2), (i.e., the Special
Euclidean group in two dimensional Euclidean space), and its Lie algebra se(2). Both are three-dimensional
spaces, and they inherit the fundamental structure of their six-dimensional cousins: translational and rotational
displacements do not commute, and no natural distance measure exists.

3.8 Velocity and acceleration vector fields

Any continuous sequence of poses that a rigid body travels through during a given time interval also determines its
velocity and acceleration at each instant in that interval. “Velocity” and “acceleration” are well-known concepts
for moving points in E3; this Section takes a closer look at what exactly they mean for moving rigid bodies.

Velocity vector field. Choosing one tangent vector at each point of the manifold is called a velocity vector
field. Any moving body generates such a vector field: at each point on the manifold (i.e., at each frame connected
to the moving body) one attaches the tangent vector that corresponds to the derivative of the motion followed
by that point (i.e, the velocity of the frame if it were rigidly connected to the moving body). Of course, it is
not hard to imagine that not every vector field corresponds to a physically feasible motion of a rigid body. The
tangent vectors are tangent to the six-dimensional manifold SE(3) of rigid body poses, and six-dimensional spaces
are rather tough on the imagination. However, there exists a more intuitive representation in E3: each point P
in E3 carries two three-vectors, one for the linear velocity of the point in the moving body that instantaneously
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coincides with P (i.e., the origin of the above-mentioned moving frame), and a second three-vector that represents
the angular velocity of that frame. Some important properties of the velocity vector field of a moving rigid body
are that

1. The velocity vector field depends linearly on the velocity: move the body twice as fast and the vectors in
each point will be twice as large.

2. Given the velocity vector field at each instant in time, one can reconstruct the motion of the moving body.

Acceleration vector field. Similarly to the “twin” velocity vector fields on E3 described in the previous
paragraphs, one can attach four three-vectors to each point P in E3 to represent the rigid body’s acceleration: the
first two give the linear velocity and acceleration of the origin of the rigid body frame that coincides instantaneously
with P , and the third and fourth three-vectors represent the frame’s angular velocity and acceleration. Note that
(i) the knowledge of the two acceleration vectors at each instant in time is not sufficient to reconstruct the body’s
motion since also the velocity at the given time instant has to be known, and (ii) the acceleration vector field
does not scale linearly with the velocity.

3.9 Twists and wrenches

Twists. Section 3.8 introduced the “twin” velocity vector field on E3. Such a field has infinitely many vectors
at each instant in time, which is not a very practical or economical way to describe a motion. However, since
the moving body is rigid, all tangent vectors in the velocity vector field can be deduced from any single one of
them. Hence, such a single tangent vector suits our Definition 1 of “rigid body velocity.” One particular choice
of tangent vector was already used in the 18th century by the Italian mathematician Giulio Mozzi (1730–1813)
[27] and in the 19th century by his German and English colleagues Julius Plücker (1801–1868) and Arthur Cayley
(1821–1895), but it is currently best known under the a name given by Robert Stawell Ball in the 1870s, [2]:

Fact-to-Remember 10 (Twist)
If one has chosen a world reference frame in E3 (which is equivalent to a choice of origin
in SE(3)), then the element of the velocity vector field at the origin of this reference frame
is called the twist of the moving body. The simplest way to look at a twist is as a couple of
three-vectors: the first one represents the angular velocity of the moving body, the second
one represents the linear velocity of the point on the body that instantaneously coincides
with the origin of the world frame.

This definition of a twist is exactly equivalent to the definition of a tangent vector to the rigid body motion at
the identity, Sect. 3.4. Hence, the space of twists (often referred to as the twist space) is just se(3).

In the mechanics literature, not only rigid body velocities are called twists, but infinitesimal displacements of
rigid bodies are called twists too, and some papers even use twist to denote a finite displacement as well. Using
the terms “velocity twist,” “infinitesimal displacement twist,” and “finite displacement twist,” respectively, avoids
these ambiguities. The reason for this confusion is that these motion concepts can all be represented by a vector
of six numbers, Chapters 4 and 6, although the previous Sections have shown that their geometric and algebraic
properties are very different.

Wrenches. Motion is important in robotics, but forces are too. The statics of a mechanical structure describes
how forces working at different points of the structure are equivalent to one resultant force. “Force” in this
context means the combination of a linear force three-vector and a moment of force three-vector. As in the case
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of the velocity vector field for a moving body, a force “vector field” can be defined on SE(3): the resultant force
and moment on a body can be kept in equilibrium at any point of the body by a certain combination of a linear
force and an angular momentum applied at that point. Hence, one could think of the whole space (i.e., SE(3) or
E3, according to what is regarded as the manifold) as filled with vectors at each point. On SE(3), the six-vector
in this field that works at the origin is called the wrench that acts on the body; this terminology is also due to
Ball, [2]. In the same way, E3 is filled with couples of three-vectors at each point, one representing a linear force
and the second one representing an angular moment.

Vector field vs. one-form The previous pargraphs introduced wrenches in the classical way, as couples of
three-vectors in E3. For most engineering purposes this way of presentation is sufficient, but for advanced topics
such as nonlinear robot control, it is important to be aware of the following: twists are elements of the vector space
se(3); wrenches cannot be elements of the same space, since they represent physically different things, namely
forces. There is however a relationship between velocity and force that is physically unambiguously defined: a
force working on a moving body generates power, or, stripping the time dimension from the velocity, a force
working on an infinitesimally moved body generates work. Hence, a wrench send a twist (i.e., tangent vector)
onto a real number (i.e., work, or power) as a linear mapping. We’ve seen the same concept in Sect. 2.3 (i.e., a
probability measure) and called it a differential form. Any given wrench is only a one-dimensional vector space,
and is hence called a one-form. The vector space of all possible wrenches is six-dimensional, and is called the
co-tangent space, se∗(3). (The name “co-tangent” is a bit misleading, since a wrench is tangent to nothing. . . )
The tangent space of twists is the dual space of the vector space of wrenches, and vice versa, [9, 10]. In summary:

Fact-to-Remember 11 (Twists are tangent vectors, wrenches are one-forms)
Twists are tangent vectors to mappings R → SE(3), i.e., mappings of an instant of time
to a pose of a moving rigid body. Wrenches are one-forms on se(3), i.e., linear maps se(3)
→ R that map a twist to the power generated by a rigid body that moves with this twist
against the given wrench. The vector space of wrenches is the dual of the vector space se(3)
of twists, and is denoted by se∗(3). These names are not so important; what is important
is to realise that twists and wrenches are different things!

You might think that the above emphasis is a bit exaggerated. But be aware when you start reading the literature
on, for example, force control of robots, or on motion planning, since these research areas contain abundant
examples of papers in which this distinction between vectors and one-forms is not recognized, and hence in which
erroneous, physically nonsensical conclusions are drawn. See e.g., [4, 11] for concise introductions to some of the
cultivated mistakes.

Dual bases The power operation between a twist t and a wrench w is called the pairing of the tangent vector
and the co-tangent vector, and denoted by 〈t,w〉. That pairing is called natural, because it is independent of
any choice of reference frame or physical units. A special case of this relationship occurs when the power in the
pairing vanishes:
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Fact-to-Remember 12 (Reciprocal twist and wrench)
A twist t and a wrench w are called reciprocal, [2, 12, 15, 23, 30], if

〈t,w〉 = 0. (3.7)

The natural pairing between tangent and co-tangent spaces induces a correspondence between tangent and co-
tangent spaces; this correspondence is called an identification. In terms of twists and wrenches, this means
that to each given twist t, there corresponds a wrench w, constructed as follows, [10, p. 61]: (i) choose a basis
{t1, . . . , t6} in the tangent space; (ii) the dual basis {w1, . . . ,w6} in the co-tangent space is uniquely defined by
the constraints 〈ti,wj〉 = δij , with δij = 1 if i = j and δij = 0 if i 6= j; (iii) choose a twist t with coordinates
(x1, . . . , x6) : t = x1t1 + · · · + x6t6; (iv) the wrench w that has the same coordinates (x1, . . . , x6) is then called
the dual of the twist t. Note, however, that this identification t ↔ w is not “natural,” since it depends on the
choice of basis {t1, . . . , t6}!

The combination of a pairing operation and an identification operation leads to a metric defined on the
manifold, i.e., a way to measure the “length” of tangent vectors. Indeed, take a twist t; use the identification
operation to find a corresponding wrench w; the pairing 〈t,w〉 is a real number that can be used as the square
of the “norm” of t. Note however, that (i) the manifold of rigid body poses does not have a natural metric, [25],
and (ii) the metric is not necessarily positive-definite (i.e, the “norm” can be zero or negative).

Instantaneous twist and wrench axes This paragraph gives, without proof, two important and intuitively
clear theorems from the previous century whose application to the field of robotics is obvious. The first is from
the French mathematician Michel Chasles (1793–1881), [7], and states that

Fact-to-Remember 13 ( Chasles’ Theorem, 1830)
The most general motion for a rigid body is a screw motion, [1, 2, 3, 14], i.e., there exists
a line in space (called the “screw axis” (SA), [2, 19, 32], or “twist axis”) such that the
body’s motion is a rotation about the SA plus a translation along it.

Chasles himself formulated his principle in many different ways. The one that comes closest to the modern
formulation is probably the following, [7, p. 321]: On peut toujours transporter un corps solide libre d’une position
dans une autre position quelconque déterminée, par le mouvement continu d’une vis à laquelle ce corps serait fixé
invariablement. Note that the motions considered above are finite displacements. If one brings the final position
and orientation of the body closer and closer to the initial position (or, equivalently, one considers the position
and orientation of a moving body at two close instants in time) the screw axis is called the instantaneous screw
axis (ISA) or twist axis of this velocity or infinitesimal displacement. The notion of twist axis was probably
already discovered many years before Chasles (the earliest reference seems to be the Italian Giulio Mozzi (1763),
[6, 13, 27]) but he normally gets the credit.

Wrenches also posses a screw axis. This was formulated by the French geometer Louis Poinsot (1777–1859)
[31], in a theorem similar to Chasles’:
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Fact-to-Remember 14 ( Poinsot’s Theorem, 1804)
Any system of forces applied to a rigid body can be reduced to a single force and an angular
moment in a plane perpendicular to the force.

3.10 Constrained rigid body

A free rigid body has six degrees of motion freedom, and can resist no forces. If constraints act on the body, its
motion degrees decrease, and the space of forces it can resist increases in dimension. Several sorts of constraints
exist:

• Hard constraint (or geometric constraint, or holonomic constraint). The space of possible twists becomes
lower-dimensional, since the motion of the rigid body is constrained in certain directions by contact with
another rigid body.

• Stiffness constraint. The body is contacting an elastic body (or suspended on elastic bars or strings). It
still has six motion degrees of freedom, but can now resist an n-dimensional vector space of wrenches (with
n > 0), i.e., those that generate a deformation of the elastic constraining bodies. Stiffness is a mapping from
infinitesimal displacement twists into wrenches.

• Damping constraint. Similar to a stiffness constraint, but the physical interpretation of damping is a mapping
from velocity twists into wrenches.

• Inertia constraint. Again similar to the stiffness and damping constraints. Inertia maps velocity twists into
momentum of a rigid body, see Chap. 10.

Most often, only the linear parts of the stiffness, damping, and inertia mappings are used, which can hence be
represented by the stiffness, damping, and inertia matrices, respectively. The inverses of these mappings are called
compliance, accommodation, and mobility, respectively. All real-world objects have a specific stiffness, damping,
and inertia. Together, these form the so-called impedance of the object; the inverse is the admittance, [18].
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Chapter 4

Screws: twists and wrenches

4.1 Introduction

After the previous Chapter’s coordinate-free approach to modelling the structure of rigid body motion, this
Chapter describes its coordinate representations. The basic geometric entities needed for rigid body motion rep-
resentation are: points, vectors, lines, and screws.

Fact-to-Remember 15 (Basic ideas of this Chapter)
Most of classical mechanics deals with properties of points or point masses. The study of
rigid body mechanics, however, requires more: lines are important (e.g., to model the axes
of the revolute or prismatic joints most robots are constructed with), and certainly screws,
which generalise the line in the sense that both translational and angular components are
described (cf. the Theorems of Chasles and Poinsot). So, it is important to know how lines
and screws are represented in coordinates.

4.2 Points

Points are the simplest geometric entities. A point’s position p can be represented numerically by a coordinate
three-vector p = (px py pz)

T . Note the double use of the symbol p: it denotes (i) the position of a point without
referring to whatever reference frame, and (ii) the coordinates of the point with respect to a chosen reference
frame. The distance between two points is given by the Euclidean distance function in Eq. (1.5), repeated here
for convenience:

d(p1,p2) = (p1
x − p2

x)2 + (p1
y − p2

y)2 + (p1
z − p2

z)
2. (4.1)

Point coordinates are often represented by a homogeneous coordinates four-vector, denoted by the same symbol:
p = (px py pz 1)T . One of the reasons for this custom is that it allows to work with the points “at infinity” in
the same way as the normal points; those points at infinity have a fourth component equal to 0.
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4.3 Direction vectors

Vectors can be used to represent directions in the Euclidean space E3. A frequently used representation is the
unit sphere S2 in E3. (The superscript “2” refers to the two-dimensionality of the sphere’s surface.) Each point
of S2 is the end point of a unique position vector starting at the origin of the sphere, and determines a spatial
direction. Direction vectors have a sense too: they impose an ordering on all points on the line through the origin
of S2 and the chosen point on its surface. So, each line through the origin contains two direction vectors with
opposite sense.

If you walk along a “straight line” over the unit sphere, you finally arrive at the point you started from; it
would take you quite some time to repeat a similar experiment in the Euclidean space. . . The “straight lines”
on S2 are in fact the so-called great circles: the intersections of the sphere with planes through its origin. The
distance between two directions (represented by two unit vectors e1 and e2) is also measured along these great
circles: construct the (unique) great circle that contains the endponts of both direction vectors, and measure the
distance along the unit sphere to travel from the end point of e1 to the end point of e2. In other words, this
distance is the angle (in radians) between the two direction vectors:

d(e1,e2) = arccos(e1 · e2), (4.2)

with the dot denoting the classical inner product between two Euclidean vectors. Note that the symbol d(·) has
different meaning when working on points or on direction vectors.

Fact-to-Remember 16 (Geometry of S2)
The “distance” between two directions is not represented by the Euclidean distance for-
mula (1.5). The reason is that directions (i.e.,, the unit sphere S2) have a different geometry
than the points in the Euclidean space E3, [17, 18, 19, 20].

Polar and axial vectors. Two interpretations exist for direction vectors in three-dimensional space, depending
on how they incorporate the notion of orientation, [6, 11]:

1. Axial vectors have an inner orientation, i.e., the direction of the vector indicates the positive orientation.
For example, a unit linear force vector: the positive direction of the force does not depend on the orientation
(right-handed vs. left-handed) of the world reference frame.

2. Polar vector have an outer orientation, i.e., the positive orientation cannot be derived from the direction
vector itself, but is imposed on it by the “environment.” For example, a unit moment of force vector: if the
handedness of the world frame changes, the orientation associated with the moment vector changes too. Note
that this is a feature of the coordinate representation, not of the physical property that the vector stands for.

As many other textbooks, this book implicitly uses right-handed reference frames only, but no physical arguments
prevent the use of left-handed frames.

Vectors are usually given three-vectors as coordinates, just as points. However, there is a fundamental differ-
ence between vectors and points: the addition of vectors is frame-independent, the “addition” of points not. For
example: adding two velocity vectors of the same moving point mass has physical meaning; adding two positions
has no such meaning. Hence, vectors are sometimes given homogeneous coordinate four-vectors with a zero fourth
component: adding two such four-vectors gives another four-vector with zero fourth component. For points with
a “1” fourth component, this addition does not work out.
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4.4 Lines–Planes

Lines are very important in robotics because:

• They model joint axes: a revolute joint makes any connected rigid body rotate about the line of its axis; a
prismatic joint makes the connected rigid body translate along its axis line.

• They model edges of the polyhedral objects used in many task planners or sensor processing modules.

• They are needed for shortest distance calculation between robots and obstacles.

Not only lines, but also planes are very common in the models used in robotics: in any simple environment model,
planes will be used to represent obstacles and object surfaces. However, no new mathematical concept is required
to model planes: the position of a point in the plane together with the (directed) normal line to the plane contain
exactly the same information. Classical geometry defines a line in two fundamental ways: (i) as the “join” of two
points, and (ii) as the “intersection” of two planes. However, a faithful representation of a joint needs one more
piece of information on top of the geometric description for a line: the positive sense of the joint’s motion.

4.4.1 Non-minimal vector coordinates

A line L(p,d) is completely defined by the ordered set of two vectors, (i) one point vector p, indicating the
position of an arbitrary point on L, and (ii) one free direction vector d, giving the line a direction as well as a
sense. (Note that the sense of the line is in fact not important if one just wants to represent an undirected line.)
Each point x on the line is given a parameter value t that satisfies x = p + td. The parameter t is unique once p

and d are chosen. The representation L(p,d) is not minimal, because it uses six parameters for only four degrees
of freedom. The following two constraints apply:

1. The direction vector can be chosen to be a unit vector, i.e., d · d = 1.

2. The point vector p can be chosen to be the point on the line that is nearest the origin, i.e. p is orthogonal to
the direction vector d: p · d = 0.

With respect to a world reference frame, the line’s coordinates are given by a six-vector:

l =

(
p

d

)
. (4.3)

4.4.2 Plücker coordinates

The previous section uses a point vector p and a free vector d to represent the line L(p,d). Arthur Cayley
(1821–1895) and Julius Plücker (1801–1861) introduced an alternative representation using two free vectors,
[4, 7, 16, 22, 21]. This representation was finally named after Plücker. We denote this Plücker representation by
Lpl(d,m). Both d and m are free vectors: d has the same meaning as before (it represents the direction of the
line) and m is the moment of d about the chosen reference origin, m = p × d. (Note that m is independent of
which point p on the line is chosen: p × d = (p + td) × d.)

The advantage of the Plücker coordinates is that they are homogeneous: Lpl(kd, km), k ∈ R, represents the
same line, while L(kp, kd) does not. (It will also extend in a natural way the representations of rigid body
velocity, and of force and torque, Sect. 4.5.) A coordinate representation of the line in Plücker coordinates is the
following six-vector l:

l =

(
d

m

)
, (4.4)
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with d and m the column three-vectors representing the coordinates of the direction and moment vectors, re-
spectively. The two three-vectors d and m are always orthogonal :

d · m = 0. (4.5)

A line in Plücker representation has still only four independent parameters, so it is not a minimal representation.
The two constraints on the six Plücker coordinates are (i) the homogeneity constraint (i.e., multiplying by a scalar
k does not change the line), and (ii) the orthogonality constraint (4.5).

Fact-to-Remember 17 (Plücker coordinates)
The Plücker coordinates of a line consist of two three-vectors: (i) an axial direction three-
vector, and (ii) the polar moment three-vector of this direction vector about the origin of
the chosen reference frame. Only four of the six coordinates are independent.

Finding a point on the line. It is sometimes necessary to find a point on the line, when only its Plücker
representation Lpl(d,m) is known. The following reasoning leads to the point p closest to the origin of the
reference frame: d×m = d× (p× d) = p(d · d)− d(d · p) = p(d · d), since p is normal to the line, i.e., d · p = 0.
Hence,

p =
d × m

d · d . (4.6)

Intersection of lines. Plücker coordinates allow a simple test to see whether two (non-parallel) lines l
1 and l

2

intersect. This test is often applied to robot joint axes. The lines intersect, if and only if, (Fig. 4.1),

d1 · m2 + d2 · m1 = 0. (4.7)

Proof: the lines intersect if the two lines are coplanar, i.e., the vector r2 − r1 from a point r1 on l
1 to a point

r2 on l
2 lies in this plane. In other words, it is orthogonal to the common normal direction, given by d1 × d2:

0 = (d1 × d2) · (r2 − r1) = (d1 × d2) · r2 − (d1 × d2) · r1 = −d1 · (d2 × r2)− (r1 × d1) · d2 = −d1 ·m2 − d2 ·m1.

d1 d2
l2r1

l1
d1 � d2r2

Figure 4.1: Two crossing lines l
1 and l

2, with common normal direction d1 × d2. r1 and r2 denote points on the
lines, with respect to the origin of the reference frame.
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Common normal. The common normal line l
cn to two lines can be calculated as follows. Figure 4.1 shows

that the following vector closure relation holds:

r1 + kd1 + ld1 × d2 + md2 = r2. (4.8)

The scalars k, l, and m are still to be determined; d1 × d2 is the direction vector of the common normal.
Equation (4.8) can be written as a set of three linear equations in the three unknowns k, l, and m:

Ax = b, (4.9)

with A =
(
d1 (d1 × d2) d2

)
,x = (k l m)T , and b = r2 − r1. This linear set of equations can be solved for the

unknowns k, l, and m. Hence, the Plücker coordinates of the common normal l
cn are

l
cn =

(
d1 × d2

p × (d1 × d2)

)
, with p = r1 + kd1. (4.10)

4.4.3 Denavit-Hartenberg line coordinates

In the early 1950s, Jacques Denavit and Richard S. Hartenberg presented the first minimal representation for a
line which is now widely used, (Fig. 4.2), [9, 14]. A line representation is minimal if it uses only four parameters,
which is the minimum needed to represent all possible lines in E3. The common normal between two lines was
the main geometric concept that allowed Denavit and Hartenberg to find a minimal representation. The line L
must first be given a direction, and is then described uniquely by the following four parameters:

1. The distance d: the orthogonal distance (i.e., along the common normal) between the line L and the line
along the Z-axis of the world reference frame. The common normal’s positive direction is from the Z-axis to
the line; d is always a positive real number.

2. The azimuth α: the angle from the X-axis of the world reference frame to the projection of the common
normal on the XY -plane. The positive sense of α follows the right-hand rule of rotations about the Z-axis of
the world frame.

3. The twist θ: the rotation about the common normal that brings L parallel to the Z axis of the world frame.
(Also the positive sense of both lines must match!) The sign of θ is determined by the right-hand rule of
rotation about the (oriented) common normal.

4. The height h: the signed distance from the XY plane to the point where the common normal intersects the
Z axis of the world reference frame. This Z-axis defines the sign of h.

The literature contains alternative formulations, differing mainly in the conventions for signs and reference axes.
Conceptually, all these formulations are equivalent, and they represent the line L by two translational parameters
(the distance d and the height h) and two rotational parameters (the azimuth α and the twist θ). We denote
such a Denavit-Hartenberg representation (“DH representation,” for short) as Ldh(d, h, α, θ). Note that a set of
four DH parameters not only represents a (directed) line, but also the pose of a frame, that has its Z axis on the
given line and its X axis along the common normal. Since only four parameters are used, the frames that can
be represented this way satisfy two constraints: (i) their X-axis intersects the Z-axis of the world frame, and (ii)
it is parallel to XY -plane of the world frame. An alternative interpretation of these constraints is that Z-axis of
the frame can be freely chosen, but not the position of the frame’s origin along the line, nor the orientation of
the frame about the line.
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Figure 4.2: Line parameters in the Denavit-
Hartenberg convention.

Figure 4.3: Line parameters in the Hayati-Roberts
convention.

Fact-to-Remember 18 (DH representation and its singularities)
The DH representation is a minimal representation for a line with respect to a reference
frame. It has problems to represent parallel lines, since then (i) the common normal is
not uniquely defined, and (ii) the parameters change discontinuously when the line moves
continuously through a configuration in which it is parallel to the Z axis. These two effects
are examples of coordinate singularities.

The DH representation is minimal : it uses only four parameters to describe four degrees of freedom. Frames or
lines do not form vector spaces (i.e., “adding” them is not a well-defined operation), and no representations exist
that can represent them with a minimal number of paramaters and without singularities. This problem can be
solved in two ways:

1. Using more than one so-called coordinate patch. For example: a complete map of the earth requires more
than one sheet of paper. One has to know where the singularities in each patch are, to decide when to switch
from one coordinate patch to the next.

2. Using more than four parameters for a line, or more than six for a frame, [24, 25, 30]. The price to pay
with these non-minimal representations is that the parameters must always be kept consistent with a set of
constraints.

Ambiguity. If someone gives you four numbers and tells you that they are DH parameters, you won’t be
able to know exactly what line or frame they represent: the interpretation of the four numbers requires a lot of
implicit knowledge, such as the choice of right or left-handed reference frames, the origin of the inertial frame, its
orientation, the positive directions of distances and angles. This problem can show up with any representation
(minimal or not) but minimal representations suffer most.

Applications of line representations. The advantages and disadvantages of DH parameters play an impor-
tant role in the calibration of a robot’s geometrical model (i.e., the relative position and orientation of its links
and joints). As with any man-made device, a robot’s real geometry can differ from its nominal model, especially
if the same model is used for all robots in mass production. Hence, if very accurate positioning is required, the
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nominal geometric model should first be calibrated for each device separately. That means that one determines
the robot’s geometric parameters from a set of accurately measured test motions. The most common approach
to calibration is (i) to assume small errors in the nominal parameters, and (ii) to use some least-squares solution
technique to derive the numerical values of these errors from the differences between the measurements and the
predictions of the nominal model, [3]. A small number of parameters is an advantage for the numerical procedure;
hence, minimal line representations are an advantage. On the other hand, commercial robots often have some
axes that are assumed to be exactly parallel; hence, trying to find small parallelism errors with a representation
that has a singularity exactly for parallel lines is very impractical.

Another important application for line representations is in the context of surface normal estimation: many
sensor based robot tasks need accurate estimation of the normal to the surface that is being scanned (by a contact,
distance, or force sensor, or looked at by a camera). All these estimation routines use some sort of coordinate
line representation, and minimal and singularity-free representations have obvious advantages here too.

4.4.4 Hayati-Roberts coordinates

Another minimal line representation is the Hayati-Roberts line representation, that we denote by Lhr(ex,ey, lx, ly),
[3, 15, 23] (Fig. 4.3):

1. ex and ey are the X and Y components of a unit direction vector e on the line. The requirement that e

be a unit vector eliminates the need for the Z component of the direction vector, since it is easily found as
ez = (1 − e2

x − e2
y)1/2.

2. lx and ly are the coordinates of the intersection point of the line with the plane through the origin of the
world reference frame, and normal to the line. The reference frame on this normal plane has the same origin
as the world reference frame, and its X and Y frame axes are the images of the world frame’s X and Y axes
through parallel projection along the line.

This representation is unique for a directed line. Its coordinate singularities are different from the Denavit-
Hartenberg singularities: it has no jumps in the parametrization if the line is (nearly) parallel to the world Z
axis, but it does have singularities if the line becomes parallel to either the X or Y axis of the world frame.

4.5 Screws

Chasles’ Theorem, Fact 13, says that with any instantaneous motion of a rigid body (a twist) there corresponds a
line in space (the “screw axis”), on which two vectors vsa and ωsa describe the body’s translational and angular
velocity, respectively. The body’s velocity can also be represented with the same two vectors d and m of the
Plücker line representation Lpl(d,m), (Sect. 4.4.2), by defining d = ωsa and m = vsa + psa × ωsa, where psa

is the position vector of a point on the screw axis. However, the two vectors d and m are then not necessarily
orthogonal anymore, as was the case for a line. Such an “extended” line is called a screw, [1, 2, 4, 16, 29] and
denoted by Lsc(d,m). A wrench is another physical instantiation of a screw: one vector is the linear force applied
to the body along the line, and the second vector is the pure moment applied to the body about the line.

Pitch of a screw. The ratio between the parallel vectors vsa and ωsa is called the pitch p of the screw:

p =
vsa

ωsa
. (4.11)

The names “screw” and “pitch” come from the similarity with the motion of a nut moving over a bolt; the amount
of translation for each turn of the nut is indeed its pitch. Pitch has the physical dimensions of length.
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Commutation of translation and rotation. Translational and rotational motions of a rigid body do not
commute in general. However, the two motions described by the individual translational and rotational motion
vectors on the screw axis do commute: first translating along the screw axis and then rotating about it results
in the same motion as performing the translation and rotation in the opposite order. This is an example of a
“property” of a representation, that is not a structural (or “invariant”) property: representing the same motion
in another frame makes the “property” disappear.

4.5.1 Screw coordinates

Once a world reference frame is chosen, the coordinates of the screw Lsc(ω,v) form a six-vector s:

s ,

(
ω

c

)
,

(
ω

p × ω + v

)
=

(
ω

p × ω + pω

)
, (4.12)

with p the (coordinate three-vector of the) position of any point on the screw axis, and p the pitch of the screw.
Similarly to Eq. (4.6), it is straightforward to find the position vector p of the point on the line closest to the
origin:

p =
ω × c

ω · ω . (4.13)

Hence, finding the screw axis from the screw coordinates is simple: p is a point on the screw axis, and ω is a
direction vector on the screw axis. Finding the pitch p is equally straightforward:

p =
ω · c
ω · ω . (4.14)

A screw has five independent parameters: four for the line, plus one for the pitch. The only remaining constraint
is the homogeneity constraint: the screws with six-vectors s and ks lie on the same line and have the same pitch.

4.5.2 Twist and wrench coordinates

Velocity twist. The homogeneity constraint represents the physical fact that a screw models all possible mo-
tions of a mechanical nut over a bolt with a given pitch. The constraint does not hold anymore if one uses a screw
to represent a rigid body motion with a given translational or rotational speed. In these cases the magnitudes of
ω andr c are determined by this speed. Such a screw with a given speed is the twist of Sect. 3.9. (Sir William
Rowan Hamilton (1788–1856) [13] called it a “screw with a magnitude.” William Kingdon Clifford (1845–1879)
called it a motor, [8, 26, 27, 28], this word being the contraction of “motion” and “vector.”)

Fact-to-Remember 19 (Independent parameters for line, screw, twist)
A line in E3 has four independent parameters, a screw has five independent parameters,
and a twist has six independent parameters.

The screw coordinates (ωT cT )T of the twist of a rigid body represent, respectively, the angular velocity of the
body, and the translational velocity of the point on the rigid body that instantaneously coincides with the origin
of the world frame, Fact 10.
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Screw twist vs. pose twist. The robotics literature uses twist coordinates with two different interpretations:

1. References originating from screw theory (i.e., relying on basic sources such as [2, 16, 26] etc.) follow the
just-mentioned interpretation: the last three-vector in the twist coordinates is the velocity of the origin.

2. Other references use this last three-vector in the twist coordinates to represent the velocity of a reference
point on the moving body, different from the origin.

When needed, this book distinguishes between both interpretations by using the names screw twist and pose
twist, respectively. (The motivation for the term “screw twist” should be clear by now; the motivation for “pose
twist” is given in Chapter 6.) Pose twists should not be used in Eqs (4.13) and (4.14).

Infinitesimal displacement twist. A velocity twist could be interpreted as the limit case of the ratio of (i) an
infinitesimal displacement of the rigid body, and (ii) the infinitesimal time interval during which the displacement
takes place. The nominator of this ratio, i.e., the infinitesimal displacement, is also called an instantaneous screw,
[2]. Its coordinates are

t∆ =
(
δx δy δz dx dy dz

)T
. (4.15)

(δx δy δz)
T represents small rotations about the X,Y and Z axes, respectively; (dx dy dz)

T is the three-vector of
small translations along the axes. The same two interpretations as in the previous paragraph exist in the context
of infinitesimal twists too.

Finite displacement. Finite displacements can also be represented by a screw-like six-vector td: the direction
of the first three-vector represents the orientation of the screw axis, the magnitude of this vector is the angle over
which the body is rotated, and the second three-vector represents the translation of the body along the screw
axis. However, in accordance with the structural fact that finite displacements belong to SE(3) and not to the
vector space se(3) (Sects 3.3, 3.4), this representation lacks the addition property of screws, velocity twists or
infinitesimal displacements twists: the addition of t1d and t2d is not the finite displacement twist that represents
the composition of the finite displacements represented by t1d and t2d. Hence, td is not a screw; we only called it
“screw-like” because it has similarly looking coordinates.

Wrench. Wrench coordinates are also given by six-vectors (fT mT )T . The interpretation is as follows: the
three-vector f represents the coordinates of the linear force, expressed with respect to the world reference frame;
the three-vector m is the sum of (i) the pure torques working on the body, and (ii) the moment of f with respect
to the origin of the world reference frame. “Screw” and “pose” interpretations apply here too: m depends on the
chosen reference point. The pitch of a wrench is the ratio m/f ; it has the units of length.

4.5.3 Importance of screws

Typical undergraduate textbooks rely on vectors to describe the physics of a moving point mass. The most
important vector properties are: (i) addition is defined and meaningful (e.g., the sum of two translational velocity
vectors is a vector that represents the combined velocity), (ii) the scalar product (or “dot product” “·”) of two
vectors is a well-defined scalar (e.g., force times displacement is energy), and (iii) the vector product (or “cross
product” “×”) of two vectors is a well-defined vector. For example, the vector product of an angular velocity with
a moment arm vector is the translational velocity of the end point of the moment arm vector. The concepts and
properties of screws are usually not treated. However, screws have the three above-mentioned vector properties
too, Chapter 3, with the spatial scalar product, or “pairing,” replacing the three-vector scalar product, and the
motor product, [5, 26, 27], (also called the spatial cross product, [10], or Lie bracket, Sect. 3.4) replacing the

48



three-vector cross product. Brand [5] proved that, in terms of this three-vector cross product, the motor product
is given by

t
1 × t

2 ,

(
ω1 × ω2

v1 × ω2 − v2 × ω1

)
. (4.16)

Note that (i) we use the same symbol “×” for both the cross and motor products, an (ii) the motor product in
Eq. (4.16) has indeed all the properties of the Lie algebra described in Sect. 3.4, such as anti-symmetry and the
Jacobi identity. Roughly speaking,

Fact-to-Remember 20 (Screws and vectors)
Screws are for rigid bodies what vectors are for point masses.

Duality. The following Chapters extensively use twists and wrenches, as the basic motion and force concepts
in the kinematics and dynamics of rigid bodies.

Fact-to-Remember 21 (Duality twist–wrench)
Twist and wrenches are both “built on top of” the same geometrical concept of the screw.
Hence, whenever we can derive a result about twists and this result depends only on the
geometric properties of the underlying screws, then we have immediately derived a dual
result for the wrenches built with the same screws.

Such dualities occur very often in the kinematics of serial and parallel robot arms. The next Chapters contain
many examples of these dualities.

4.5.4 Reciprocity of screws

Reciprocity as defined in Sect. 3.9 is not in the first place a property of twists and wrenches, but a property of
screws. Two screws s1 = (dT

1 cT
1 )T and s2 = (dT

2 cT
2 )T are reciprocal if

s1∆̃s2 = dT
1 c2 + dT

2 c1 = 0, (4.17)

with

∆̃ ,

(
0 3 1 3

1 3 0 3

)
. (4.18)

In robotics, one often needs to calculate the reciprocal set of a set of screws. For example, a five degrees of
freedom robot has a one-dimensional reciprocal set, consisting of all wrenches exerted on the robot’s end effector
that can be taken up completely by the mechanical structure of the robot, i.e., without requiring any power from
the motors. From a numerical point of view, the calculation of the reciprocal set of the set of screws {s1, . . . , sn}
looks a lot like the calculation of its orthogonal complement. Indeed, the “classical” Gram-Schmidt procedure,
[12], is applicable, if one first premultiplies all screws in {s1, . . . , sn} by the matrix ∆̃, Eq. (4.18).
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Chapter 5

Orientation coordinates

5.1 Introduction

Imagine a set of orthogonal and right-handed reference frames, all having the same point as origin. These frames
represent different orientations of the rigid body to which they are fixed. The orientation of a frame is not an
absolute concept, since it implies a second reference frame with respect to which it is defined. Hence, one should
speak only about the relative orientation between two frames. Orientation and its time derivatives, i.e., angular
velocity and acceleration, are quite distinct from the more intuitive concepts of Euclidean position and its time
derivatives. The properties of the corresponding coordinate representations will reflect this structural difference.

Fact-to-Remember 22 (Basic ideas of this Chapter)
“Rotation” (“(relative) orientation”) is the main difference between the kinematics of
points and the kinematics of rigid bodies. A rigid body has three degrees of freedom
in orientation. However, every representation with only three parameters inevitably has
coordinate singularities at a number of orientations. The second important fact is that ro-
tational velocity is not found as the time derivative of any representation of orientation;
however, integrating factors always exist. Hence, orientation coordinates are integrable (or
“holonomic”).

A coordinate singularity occurs whenever a small change in the represented system (i.c., orientation) cannot be
represented by a small change in coordinates. This concept will appear many more times in this text.

5.2 Rotation matrix

Orientation and rotation are related concepts. They represent the relative pose of two (reference rames on) rigid
bodies, modulo the translation: choose an arbitrary reference point on both bodies, and translate all points in the
second body over the (inverse of the) vector connecting both points; what remains of the relative displacement
is the relative orientation of both bodies. This Section describes rotation matrices as appropriate and very often
used mathematical representations of relative orientation; later Sections introduce alternative representations.
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5.2.1 Definition and use

Several coordinate representations exist to express the relative orientation of a frame {b} with respect to a frame
{a}. The 3 × 3 rotation matrix b

aR is among the most popular. Other names for this matrix are orientation
matrix, or matrix of direction cosines.

Fact-to-Remember 23 (Rotation matrix)
The columns of b

aR contain the components of the unit vectors xb,yb and zb along the axes
of frame {b}, expressed in the reference frame {a} (Fig. 5.1):

b
aR =

(
Rij

)
=

(
ax

b
ayb

azb
)

=




xb · xa yb · xa zb · xa

xb · ya yb · ya zb · ya

xb · za yb · za zb · za


 . (5.1)

ax
b is the notation for the three-vector with the coordinates of the end-point of the unit

vector xb in the reference frame {a}, formed by the three unit vectors xa,ya and za.

xb

yb

ya

za

zb

xa R11R21

R31
R12

R22

R32

R13

R33

R23

Figure 5.1: Components Rij of a rotation matrix b
aR.

Equation 5.1 allows to calculate the coordinates of a point p with respect to the frame {a} if the coordinates of
this same point p are known with respect to the frame {b} (and if {a} and {b} have the same origin!):

apx = p · xa =
(
bpx xb + bpy yb + bpz zb

)
· xa.

Hence

ap = b
aR bp, or




apx

apy

apz


 = b

aR




bpx

bpy

bpz


 . (5.2)

Note the notational convention: subscript “b” on coordinate vector bp “cancels” with superscript “b” on b
aR, and

is replaced by subscript “a.”
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noa notation In robotics, one sometimes encounters the notation noa for the three axes of a right-handed
orthogonal reference frame. This nomenclature is due to Richard Paul, [20], which introduced it to describe the
different axes of an end-effector frame attached to a parallel-jaw gripper of the robot. (A “parallel-jaw” gripper
is probably the oldest and most frequent type of “robotic hand”; it simply consists of two parallel plates that can
open and close.) In this context, these three letters stand for:

“open” direction: the direction in which the fingers of the gripper open and close. This direction is normal to
the gripper plates.

“approach” direction: the direction in which the robot gripper approaches its target. This direction is parallel
to the “finger direction” of the gripper plates.

“normal” direction. The direction orthogonal to the previous two directions.

5.2.2 Rotations about frame axes

Rotations about the frame axes have simple expressions. Let R(X,α) denote the rotation mapping that moves
the endpoint of the vector p over a circular arc of α radians to a vector p′ (see Fig. 5.2, where p = ey or ez),
and during which the centre of the arc lies on the X axis. Hence, the arc itself lies in a plane through p and
orthogonal to X. The angle is oriented according to the right-hand rule about the X axis.

X

Y
Z

α

(0,cα ,sα)

(0,−sα ,cα)α

Figure 5.2: Rotation over an angle α about the X axis. cα stands for cos(α), and sα stands for sin(α).

The rotation matrix of this rotation is easily derived from Fig. 5.2:

R(X,α) =




1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)


 . (5.3)

This means that the components (px py pz)
T of any vector p are mapped to the components (p′

x p′
y p′

z)
T as




p′
x

p′
y

p′
z


 =




1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)







px

py

pz


 . (5.4)
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The rotation matrices R(Y, α) and R(Z,α), corresponding to rotations about the Y and Z frame axes respectively,
are found in a similar way:

R(Y, α) =




cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)


 , R(Z,α) =




cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


 . (5.5)

5.2.3 Active and passive interpretation

Besides a (passive) transformation of a vector’s coordinates in a frame {b} to its coordinates in a frame {a}, a
rotation mapping R has also a second, equally important interpretation: R moves the frame {a} into the frame
{b}. We call this interpretation the active interpretation of the rotation mapping. It moves the unit vector xa

that lies along the X axis of {a} to the unit vector xb that lies along the X axis of {b}: R(xa) = xb. Similarly
for the unit vectors along Y and Z. Hence, in matrix form:

(
axb

ayb
azb

)
= R

(
axa

aya
aza

)
= R. (5.6)

Equation (5.1) implies that R = b
aR, i.e., active and passive interpretations of orientation and rotation have the

same matrix representation.

Fact-to-Remember 24 (Active and passive interpretations)
A rotation mapping has both an active and a passive interpretation, [17]: the passive form
transforms coordinates of the same spatial point (or vector) from one reference frame to
another (i.e., it represents “orientation”) while the active interpretation moves one spatial
point (or vector) to another spatial point (or vector) (i.e., it represents “rotation”). Both
interpretations are represented by the same matrix.

5.2.4 Uniqueness

From the above-mentioned construction of the rotation matrix, the following fact is obvious, but important:

Fact-to-Remember 25 (Uniqueness)
A rotation matrix is a unique and unambiguous representation of the relative orientation

of two right-handed, orthogonal reference frames in the Euclidean space E3. This means
that one single rotation matrix corresponds to each relative orientation, and each rotation
matrix represents one single relative orientation.

Note that many mechanics or geometry books (e.g., [5, 7, 9, 14]) use another definition for the rotation matrix:
this alternative corresponds to the transpose of the rotation matrices used in this text. Moreover, some older
references use left-handed reference frames. Be aware of these alternative definitions when you consult such
references! Fortunately, all modern robotics literature adheres to the same convention as this text.
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5.2.5 Inverse

The inverse of a rotation matrix b
aR is, by definition, a

bR since it transforms coordinates with respect to {a} into
coordinates with respect to {b}. The defining equation (5.1) gives

a
bR =




xa · xb ya · xb za · xb

xa · yb ya · yb za · yb

xa · zb ya · zb za · zb


 . (5.7)

Comparing Eqs (5.1) and (5.7) yields

a
bR = b

aR
T
, (5.8)

and

Fact-to-Remember 26 (Orthogonality)
Each rotation matrix is an orthogonal linear transformation (i.e., it is an orthogonal ma-
trix), since it satisfies the following six orthogonality constraints:

RT R = RRT = 1 3. (5.9)

This implies that

R−1 = RT . (5.10)

5.2.6 Non-minimal representation

A direct consequence of Eq. (5.9) is that

Fact-to-Remember 27 (Non-minimal representation)
A rotation matrix is a non-minimal representation of an orientation, since it uses
nine numbers to represent three degrees of freedom. The orthogonality constraints (5.9)
uniquely determine the six dependent parameters. One of its big advantages is that it has
no coordinate singularities; this will not be the case for any of the minimal representations
discussed later.

5.2.7 Isometry—SO(3)

Rotations are isometries of the Euclidean space, since they maintain angles between vectors, and lengths of
vectors. Moreover, right-handed frames are mapped into right-handed frames. So, the determinant of rotation
matrices is +1. That’s why mathematicians call them “orientation preserving (or special) orthogonal linear
transformations,” or “proper orthogonal matrices.” Their structural properties are described by the Lie group
SO(3), Sect. 3.6.
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5.2.8 Composition of rotations

Rotation matrices are faithful representations of SO(3). Hence, composition of rotations is represented by multi-
plication of rotation matrices. The following paragraphs derive the exact formula from reasoning with the active
interpretation of rotation matrices.

Xp
�

Z

� X 0
Y 0�p00

p0 Y
Figure 5.3: Rotation over an angle α about the Z axis, followed by a rotation about the moved Y -axis (i.e., Y ′)
over an angle −β.

Figure 5.3 shows the rotation of the unit vector p on the X-axis to the point p′, due to a rotation about Z
over an angle α. Then, p′ is moved to p′′, by a rotation over an angle β about the Y ′-axis, i.e., the axis to which
the Y -axis is moved by the rotation over α about Z. (In fact, the rotation about Y ′ is over the angle −β, due to
the right-hand rule convention.) It is easy to calculate that p′′ has the following coordinates in the original frame
{XY Z}:

p′′ =




cαcβ

sαcβ

sβ


 , (5.11)

where cα = cos(α), etc. The coordinates of the rotated unit vectors along the Y and Z axes can be calculated in
a similar way. Bringing these three results together gives the rotation matrix R(ZY, α,−β) corresponding to the
composition of, first, R(Z,α), the rotation about Z over the angle α, and, then, R(Y,−β), the rotation about Y ′

(i.e., the moved Y -axis) over the angle −β:

R(ZY, α,−β) =




cαcβ −sα −cαsβ

sαcβ cα −sαsβ

sβ 0 cβ


 = R(Z,α)R(Y,−β). (5.12)

Somewhere around 1840, [4, 23], the French mathematician Olinde Rodrigues (1794–1851) seems to have been
the first to find the coordinate expressions for composing rotations this way.

Inverse. The inverse of a single rotation about an axis equals the rotation about the same axis, but over the
negative of the rotation angle:

R−1(X,α) = R(X − α). (5.13)

The inverse of a compound orientation follows immediately from the rule for the inverse of the matrix product:

R−1(ZY, α,−β) = R(Y, β)R(Z,−α). (5.14)
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5.2.9 Rotation matrix time rate—Angular velocity

Robot devices are often position controlled, i.e., the user commands the robot to move to a given position, and the
robot control software should do its best to attain this position as reliably and accurately as possible. However,
many applications require velocity control ; e.g., spray painting or applying a continuous stream of glue to an
automobile window seam. Hence, a representation of velocity is needed too. Similarly to the case of points, the
velocity of a rigid body is calculated as the differential motion between two nearby poses in a given small period
of time. For the translational velocity v of (a reference point on) the moving body, this calculation is performed
straightforwardly by the classical difference relation between two nearby position vectors p(t1) and p(t2):

v =
dp

dt
≈ p(t2) − p(t1)

t2 − t1
. (5.15)

However, the relationship between the time rate of the orientation matrix on the one hand, and the angular
velocity three-vector ω on the other hand, is a bit more complicated:

1. The coordinates with respect to {a} of a point fixed to {b} are:

ap(t) = b
aR(t) bp. (5.16)

2. Assume that reference frame {b} in Eq. (5.2) moves with respect to {a} with angular velocity ω. Hence, the
rotation matrix b

aR changes. Since the point p is rigidly fixed to the frame {b}, its components bp with respect
to {b} do not change.

3. The time derivative of Eq. (5.16) gives the instantaneous translational velocity of the endpoint of the position
vector p:

aṗ = b
aṘ bp

= b
aṘ (a

bR ap) . (5.17)

rotation axis

p
! � p!

Figure 5.4: Translational velocity of a point fixed to a rigid body rotating with an angular velocity ω.
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4. Alternatively, Fig. 5.4 shows that the same translational velocity is given by:

ṗ = ω × p

= [ω]p. (5.18)

[ω] is the skew-symmetric matrix operator that represents the vector product “[ω] ·” with the three-vector ω:

[ω] ,




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (5.19)

Hence, the following linear relationships result from Eqs (5.17) and (5.18):

[aω] = b
aṘ

b
aR

−1, or b
aṘ = [aω] b

aR. (5.20)

The angular velocity vector and the time rate of the rotation matrix are coupled by the inverse of the current
rotation matrix, which acts as a so-called integrating factor, [22]. This existence of an integrating factor is a
property of rotations, i.e., all orientation representations will have this property. A related property is holonomy :
executing a “closed trajectory” (i.e., one stops where one has started) in “rotation matrix space” leads to a closed
trajectory in orientation space. Later Chapters will present some non-holonomic robotic systems.

5.2.10 Exponential and logarithm

Section 3.5 introduced the concept of exponentiating a velocity to get a change in pose. This Section gives a
coordinate representation for this mapping in the case of an angular velocity about a frame axis, [25]. Assume a
constant angular velocity ω = (ωx 0 0)T along the X axis of the base reference frame. After time t, the frame is
rotated over an angle αt = ωxt radians, and the corresponding rotation matrix is, Eq. (5.3),

R(X,αt) =




1 0 0
0 cos(αt) − sin(αt)
0 sin(αt) cos(αt)


 .

The name “exponential” for this operation becomes clear by noticing that the matrix R(X,αt) is equal to the
matrix exponential of the skew-symmetric matrix [ω] that corresponds to the angular velocity ω, Eq. (5.19): the
solution of Eq. (5.20) is R(t) = C exp ([ω]t) , C ∈ R. The angular motion starts with R(t = 0) at time t = 0, such
that exp ([ω]t) = I3×3 and thus C = 1. Hence,

R(X,αt) = exp ([ω]t) . (5.21)

An alternative, coordinate-based proof consists of filling in

A , [ω]t =




0 0 0
0 0 −ωxt
0 ωxt 0


 ,

in the Taylor series of the matrix exponential:

exp(A)
∆

= 1 + A +
A2

2!
+

A3

3!
+ . . . (5.22)
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The matrix powers of A are

A2 =




0 0 0
0 −ω2

xt2 0
0 0 −ω2

xt2


 , A3 =




0 0 0
0 0 −ω3

xt3

0 ω3
xt3 0


 = −ω2

xt2A. (5.23)

Hence, all higher powers of A are proportional to A or A2, and the proportionality factors correspond exactly to
the Taylor series of the sines and cosines of αt used in R(X,αt). The reasoning above holds for general rotations
too, and not just for rotations about frame axes.

Logarithm The previous paragraphs proved that the exponential of an angular velocity about a frame axis
yields a finite rotation. The converse is also true: each finite rotation about, for example, the X axis can be
generated by applying an angular velocity about the X axis during one unit of time. This velocity is called the
logarithm of the finite rotation.

5.2.11 Infinitesimal rotation

Equations (5.21) and (5.22) give an easy way to find the first order approximation of a small rotation about a
given axis: let (δx δy δz)

T be a small rotation about the frame axes (or, equivalently, an angular velocity applied
during a small time period), then stopping the Taylor series in Eq. (5.22) after the linear term gives:

R∆ =




1 −δz δy

δz 1 δx

−δy δx 1


 . (5.24)

R∆ is called an inifinitesimal rotation matrix. (This text will use the subscript “∆” many more times to denote
infinitesimal quantities.)

5.3 Euler angles

The previous Section introduced the rotation matrix as mathematical representation for relative orientation; this
Section looks at minimal representations, i.e., sets of only three numbers. These numbers are called Euler angles.
They describe any orientation as a sequence of three rotations about moving frame axes, i.e., the second rotation
takes place about an axis in the frame after it was moved by the first rotation, and so on. Euler angles are
extensively used in robotics, but also in many other disciplines.

5.3.1 Euler’s contributions

Motion of rigid bodies, and especially rotational motion, was a primary source of inspiration for all mathematicians
of the eighteenth and nineteenth centuries, even though they were “just” looking for a intuitive application for
their work on mathematical analysis or geometry. The name of the Swiss mathematician Leonhard Euler (1707–
1783) is intimately connected to the following theorems that are fundamental for the kinematics of robotic devices
and robotic tasks (but he surely was neither the first one, nor the only one to work on these problems!). Euler’s
results are the theoretical basis for
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Fact-to-Remember 28 (Minimal representations)
Around 1750, Euler proved that the relative orientation of two coordinate systems can be
specified by a set of three independent angles, [7, 21].

Fact-to-Remember 29 (Euler’s Theorem, 1775)
Any displacement of a rigid body that leaves one point fixed is a rotation about some axis,
[1, 2, 7].

The first theorem results in the large set of three-angle orientation representations (all of them are called Euler
angles!) discussed in this Section.

The second theorem predicts the existence of a so-called equivalent axis and the corresponding equivalent
rotation angle, discussed in more detail in Section 5.4. “Displacement” means that only the initial and final poses
of the body are taken into account, not the trajectory the body followed to move between those poses.

5.3.2 Composition of rotations about moving axes

One of the major characteristics of robotic devices is that they consist of multiple bodies connected by joints. Each
joint between two links contributes to the orientation of the robot’s “end effector” (unless the joint is prismatic!).
The total end effector orientation is the composition of these individual contributions. Section 5.2.8 explained
already how to compose two subsequent rotations; this section uses these results to find the rotation matrices
generated by different sets of three Euler angles. These are illustrated by means of the example of a simple serial
kinematic chain with three revolute joints (Fig. 5.5). This kinematic structure is commonly used for “wrists” of
serial manipulators, i.e., that part of the robot arm that takes care of the final orientation of the end effector.
It consists of three revolute joints, whose axes intersect in one single point. The structure has an immobile base
(the “zeroth” link), to which a base reference frame {bs} is attached. The first joint rotates about the Z axis of
{bs}, and moves the first, second and third link of the wrist together with respect to {bs}. A reference frame {a}
is attached to the first link. Similarly, the second joint rotates about the X axis of {a}, and moves a frame {b} on
the second link with respect to {a}. Finally, the third joint rotates about the Z axis of {b}, and moves the end
effector frame {ee} with respect to {b}. The above-mentioned conventions explain why this kinematic structure
is referred to as a ZXZ wrist.

Forward mapping. Obviously, it must be possible to obtain the relative orientation of the “end effector”
frame {ee} with respect to the “base” frame {bs} from the relative orientation of {ee} with respect to {b}, {b}
with respect to {a}, and {a} with respect to {bs}. With respect to their local reference frames, each of these
one-joint transformations has the simple form of the frame axis rotation matrices in Eqs (5.3) and (5.5), i.e.,
ee
bR = R(Z, γ), b

aR = R(X,β), a
bsR = R(Z,α), respectively. The angles α, β and γ are the joint angles of the

three revolute joints, with respect to the “zero” configuration in which {ee} and {bs} are parallel (Fig. 5.5). The
total resulting rotation matrix ee

bsR is found from applying Eq. (5.12) twice. That equation was derived with the
active interpretation of rotations; here, an alternative derivation is constructed using the passive interpretation:

1. The unit vector xee along the X axis of the end effector reference frame has coordinates bx
ee = ee

bR eex
ee =

ee
bR (1 0 0)T in the reference frame {b}. This is a straightforward application of the definition Eq. (5.1).

2. These coordinates bx
ee, in turn, are transformed into axee = b

aR bx
ee, with respect to frame {a}.

62



X

z

x
x x

x
y

y
y y

z
z z

Y

{a}

{b}

{ee}

{bs} {bs}

{a} {a}

{b} {b}
{ee}

30o

50o

40o

X Y

Z

30o

50o

40o

zz z
z

y

y

y

y

xx

x

x

Figure 5.5: Serial kinematic chain (“ZXZ wrist”) with three revolute joints, as an example of the composition of
rotations about the “moving” z, x and z axes.

3. Finally, its coordinates in frame {bs} are a
bsR axee. On the other hand, and by definition, these coordinates

are also given by ee
bsR eex

ee = ee
bsR (1 0 0)T .

4. Similarly for yee and zee.

Hence

ee
bsR = a

bsR
b
aR

ee
bR

= R(Z,α) R(X,β) R(Z, γ) (5.25)

=




cα −sα 0
sα cα 0
0 0 1







1 0 0
0 cβ −sβ

0 sβ cβ







cγ −sγ 0
sγ cγ 0
0 0 1


 (5.26)

=




cγcα − sγcβsα −sγcα − cγcβsα sβsα

cγsα + sγcβcα −sγsα + cγcβcα −sβcα

sγsβ cγsβ cβ


 , (5.27)

with the obvious abbreviations cα = cos(α), etc. This Eq. (5.27) gives the rotation matrix that corresponds to
the ZXZ Euler angles α, β and γ.

Inverse mapping. The mapping (α, β, γ) 7→ R must be inverted if one wants to steer a robot wrist as in
Figure 5.5 to a desired Cartesian orientation, i.e., a desired orientation R is given, and the corresponding angles
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Figure 5.6: The ZYZ Euler angles.

α, β and γ are sought. This inverse can be derived by inspection. α follows from the ratio of R13(= sβsα) and
R23(= −sβcα):

α = atan2(R13,−R23), (5.28)

where “atan2” calculates the arc tangent with the correct quadrant, since it explicitly uses both sine and cosine
of the angle and not just their ratio. Then, β is found from the rightmost column in Eq. (5.27):

β = atan2(−R23cα + R13sα, R33). (5.29)

Finally, γ follows from R31(= sγsβ) and R32(= cγsβ):

γ = atan2(R31, R32). (5.30)

Note the bad numerical conditioning for small β, and the coordinate singularity in the inverse relationship if
β = 0: in this case, R13 = R23 = R31 = R32 = 0. Hence, Eqs (5.28)–(5.30) are not well defined. Physically,
this corresponds to situation in which the first and third axes of the wrist in Figure 5.5 are aligned since then R

is simply a rotation about the Z axis of {bs}. It is obvious that, in this aligned situation, this rotation about Z
can be achieved by an infinite number of compositions of rotations about the first and third Z axes. But, on the
other hand, it is impossible in this situation to apply an angular velocity about the Y -axis of {a}, i.e., a small
rotation about Y needs large rotations about X and Z.

Note also that a second solution exists for the inverse calculation (i.e., a different set of Euler angles that gives
the same orientation): cβ , sβsα and −sβcα do not change if β is replaced by −β, and α by α + π. In order to
keep the last row of the rotation matrix unchanged, γ also has to be replaced by γ + π.

Choice of Euler angles The three-angle sets of Euler angles represent subsequent rotations about axes of
a moving orthogonal reference frame. The previous paragraphs presented the so-called ZXZ Euler angles. In
principle, each triplet of axes gives rise to another set of Euler angles; e.g., Fig. 5.6 shows the ZYZ triplet.
However, triplets should not have two identical axes in consecutive places, e.g., ZZX or XYY. Note that no
“best” choice exists for the three Euler angles: the appropriateness of a particular set depends on the application.
(Euler himself often used different sets, more complicated than the ones that are now named after him, [21].)

The range of the three Euler angles must be limited in order to avoid multiple sets of angles mapping onto
the same orientation. For example, in the ZYZ Euler angle representation (Fig. 5.6):

1. The first rotation about Z has a range of −π to π. (Inspired by astronomical and geographical terminology,
this angle is sometimes called the azimuth or longitude angle, [7].)

2. The second rotation, about the moved Y axis, has a range of −π/2 to π/2. (This angle is called the elevation
or latitude angle, because it determines the “height” above or below the horizon or equator.)
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3. The third rotation about Z has a range of −π to π. (It is sometimes called the spin angle.)

5.3.3 Rotations about fixed axes—Roll, Pitch, Yaw

The obvious next question is now: “What orientation results if one performs R(Z,α), R(X,β) and R(Z, γ) (in this
order) about the axes of the fixed reference frame?” The corresponding total orientation is found straightforwardly
from the following reasoning using the active rotation interpretation.

1. Start with four coinciding reference frames, {bs} = {a} = {b} = {ee}.

2. In the first motion, {bs} remains in place, and {a}, {b} and {ee} rotate together about the Z-axis of {bs} over
an angle α. The unit vector xbs along the X axis of the base reference frame is then mapped onto the vector
with coordinates bsx

a = R(Z,α) (1 0 0)T .

3. R(X,β) then rotates frames {b} and {ee} together about the X-axis of {a}. This moves the vector bsx
a further

to bsx
b = R(X,β) bsx

a.

4. Finally, bsx
b is moved further to bsx

ee = R(Z, γ) bsx
b.

Hence, the total operation is

R(ZXZ,α, β, γ) = R(Z, γ) R(X,β) R(Z,α) (5.31)

=




cγ −sγ 0
sγ cγ 0
0 0 1







1 0 0
0 cβ −sβ

0 sβ cβ







cα −sα 0
sα cα 0
0 0 1


 (5.32)

=




cγcα − sγcβsα −cγsα − sγcβcα sγsβ

sγcα + cγcβsα −sγsα + cγcβcα −cγsβ

sβsα sβcα cβ


 . (5.33)

Note the difference with Eq. (5.27). Don’t try to memorise the order in which rotation matrices are multiplied
when composing rotations about fixed or moving frame axes. It’s much better to repeat each time the simple
reasonings that were used in each of these cases. In operator form, Eqs (5.25) and (5.31) are expressed as

Fact-to-Remember 30 (Moving vs. fixed axed)

Rm
zxz(α, β, γ) = R(Z,α)R(X,β)R(Z, γ), (5.34)

and Rf
zxz(α, β, γ) = R(Z, γ)R(X,β)R(Z,α). (5.35)

The superscripts “m” and “f” indicate that the rotations take place about moving, respectively fixed frame axes.
The subscript denotes the order of the rotations. The parameter values are the corresponding rotation angles.

Roll-Pitch-Yaw angles. If the rotation angles are small, the Euler angle sets with common first and third
rotation axes (e.g., ZYZ or ZXZ ) are badly conditioned numerically, since the spatial directions of these first
and third axes differ only slightly. (Recall the problems with small β in Eqs (5.28)–(5.30).) For many centuries
already, this situation has been very common for sea navigation, and hence, Roll-Pitch-Yaw have been introduced,
describing rotations about three orthogonal axes fixed to the moving object or vehicle. This name still reminds its
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nautical origin. The Roll-Pitch-Yaw angles represent the orientation of a frame, by subsequent rotations about
the vertical (Z, “yaw” y), transverse (Y , “pitch” p) and longitudinal (X, “roll” r) axes of the moving rigid body
(Fig. 5.7). The ZYX Euler angles are introduced here as rotations about moving axes, but as shown in the
previous subsection they are equivalent to rotations about, respectively, the fixed X,Y and Z axes, over the same
angles (Fig. 5.8). Hence, the rotation matrix corresponding to the ZYX or Roll-Pitch-Yaw Euler angles is

R(RPY, r, p, y) = R(ZY X, y, p, r)

= R(Z, y) R(Y, p) R(X, r)

=




cy −sy 0
sy cy 0
0 0 1







cp 0 sp

0 1 0
−sp 0 cp







1 0 0
0 cr −sr

0 sr cr




=




cycp cyspsr − sycr cyspcr + sysr

sycp syspsr + cycr syspcr − cysr

−sp cpsr cpcr


 . (5.36)

yaw

pitch Y

X

Z

roll

Figure 5.7: Roll-Pitch-Yaw angles for a mobile robot. (Figure courtesy of W. Persoons.)

Inverse of RPY. The inverse relationship calculates roll r, pitch p and yaw y from a given rotation matrix
R. As for the ZXZ Euler angles, these relationships are easily derived by inspection of Eq. (5.36); for example,

r = atan2(R32, R33), (5.37)

y = atan2(R21, R11), (5.38)

p = atan2(−R31, cyR11 + syR21). (5.39)

Note some similarities with the Euler angles of Eqs (5.28)–(5.30):

1. The equations above are badly conditioned numerically if cp ≈ 0. This case corresponds to p ≈ π/2 or −π/2,
i.e., a “large” angle; but, as mentioned above, the Roll-Pitch-Yaw Euler angles have been introduced historically
for small angles only.

2. A second solution is found by replacing p by π − p, r by r + π and y by y + π.
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Figure 5.8: ZYX Euler angles (top) and Roll-Pitch-Yaw angles (bottom), both corresponding to the same orien-
tation.

5.3.4 Advantages and disadvantages

Three-angle orientation representations have two advantages:

1. They use the minimal number of parameters.

2. One can choose a set of three angles that, by design, feels “natural” or “intuitive” for a given application. For
example, the orientations of the specific robotic wrist in Figure 5.5 are naturally represented by ZXZ Euler
angles. Or, the roll, pitch and yaw motions of a ship or airplane definitely live up to their names in rough
weather.

However, it is a (not so well-known)

Fact-to-Remember 31 (Singularities of Euler angles)
No set of three angles can globally represent all orientations without singularity, [12].

This means that a set of neighbouring orientations cannot always be represented by a set of neighbouring Euler
angles. (The converse is true: the rotation matrix in, for example, Eq. (5.36) is a continuous function of its
Euler angle parameters.) For example, the robot wrist in Figure 5.5 has a singularity when two axes line up.
This happens when the rotation about the second axis brings the third axis parallel to the first. Indeed, two
orientations nearly parallel to the base frame of the wrist, but with their origins lying on opposite sides of the
Y axis, cannot be given Euler angle values that lie close to each other. This can cause problems if the robot
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controller blindly interpolates between the initial orientation and the desired end orientation. Another example:
a small rotation about the X-axis requires large rotations of the joints in a ZYZ wrist.

Inverse relations such as Eqs (5.38)-(5.39) always become singular for some particular values of the Euler
angles. Physically, this corresponds to the fact that any spherical wrist with three joints has configurations in
which two of the axes line up.

Some orientations don’t have unique Euler angles. For example, the ZXZ Euler angle set described above is
not one-to-one if the angle ranges include the limits ±π or ±π/2: the “north” and “south poles” are covered an
infinite number of times. Finally, one should be aware of this

Fact-to-Remember 32 (Euler angles are not a vector)
No set of three Euler angles is a vector:
1. Adding two sets of Euler angles does not give the set of Euler angles that corresponds
to the composed orientation.
2. The order of rotations matters, i.e., composition of rotations is not commutative, while
vector addition is.

5.3.5 Euler angle time rates and angular velocity

Equation (5.20) represents the relation between the time rate of an orientation matrix and the instantaneous
angular velocity of the moving frame. This paragraph deduces a similar relationship between the angular velocity
ω and the time derivatives of the Euler angles.

Take again the example of the ZXZ Euler angles rotation of Figure 5.5. In an orientation with given α, β and
γ, the time rate of the angle α generates an instantaneous angular velocity (with magnitude α̇) about the Z axis of
the fixed frame. The time rate of the angle β gives an instantaneous angular velocity (with magnitude β̇) about the
X axis that has been moved by R(Z,α), and hence is currently pointing in the direction a

bsR (1 0 0)T = (cα sα 0)T .
The time rate of the angle γ has a magnitude γ̇, and takes place about the Z axis of the frame moved first by
R(Z,α) and then by R(X,β), and hence is pointing in the direction a

bsR
b
aR (0 0 1)T = (sβsα − sβcα cβ)T .

Summing these three angular velocity contributions, the total angular velocity three-vector ω is




ωx

ωy

ωz


 =




0 cα sβsα

0 sα −sβcα

1 0 cβ







α̇

β̇
γ̇


 . (5.40)

Inverse relationship. Some simple algebra yields the inverse of this relationship:




α̇

β̇
γ̇


 =




−sαcβ

sβ

cαcβ

sβ
1

cα sα 0
sα

sβ
−cα

sβ
0







ωx

ωy

ωz


 . (5.41)

In correspondence to the singularity analysis above, this inverse becomes singular for β = 0, i.e., when the first
and third joint axes of the spherical wrist in Figure 5.5 line up. In this configuration, no angular velocity about
the Y axis is possible.
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5.3.6 Integrability of angular velocity

The angular velocity is represented by a three-vector ω; a three-vector of Euler angles represents the orientation.
Integrating the angular velocity over a certain amount of time results in a change of Euler angles. But:

Fact-to-Remember 33 (Angular velocity and Euler angle derivatives)
The angular velocity three-vector ω is not exact, i.e., it is not the time derivative of any
Euler angle set, [11, p. 347]. However, integrating factors such as in Eq. (5.40) exist.

The non-exactness is proved as follows. Consider, for example, the Y component of ω in Eq. (5.40). In “differ-
ential” form, this gives

sαdβ − sβcαdγ , A(α, β, γ)dα + B(α, β, γ)dβ + C(α, β, γ)dγ. (5.42)

Such a differential form is integrable (or exact [3, 22, 24, 27]) if and only if

∂A

∂β
=

∂B

∂α
, (5.43)

as well as all similar combinations. That this condition is not satisfied is easily checked from Eq. (5.42):

∂C

∂β
= −cβcα, but

∂B

∂γ
= 0. (5.44)

5.4 Equivalent axis and equivalent angle of rotation

Euler’s Theorem (Fact 29) says that any displacement of a rigid body in which (at least) one point remains fixed,
is a rotation about some axis. In other words, every rotation matrix R is generated by one single rotation, about
a certain axis represented by the unit vector eeq, and over a certain angle θ. eeq is the unit vector along the
so-called equivalent rotation axis, and θ is the equivalent rotation angle. The obvious question, of course, is how
to find these equivalent parameters from the rotation matrix, and vice versa?

5.4.1 Forward relation

If the axis eeq = (eeq
x eeq

y eeq
z )T and the angle θ are known, the corresponding rotation matrix R(eeq, θ) is found

as a sequence of five frame axis rotations about fixed axes (Fig. 5.9):

1. Rotate the equivalent axis about the Z axis until it lies in the XZ plane. This is done by rotation matrix
R(Z,α), with α = − arctan(eeq

y /eeq
x ).

2. Rotate this new axis about the Y axis until it coincides with the X axis. This is done by rotation matrix
R(Y, β), with β = arctan

(
eeq

z /
(
(eeq

x )2 + (eeq
y )2

))
.

3. Perform the rotation about the angle θ: R(X, θ).

4. Execute the first two rotations in reverse order, i.e., bring the equivalent axis back to its original position.
Hence
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R(eeq, θ) = R(Z,−α)R(Y,−β)R(X, θ)R(Y, β)R(Z,α), (5.45)

or

R(eeq, θ) =




(eeq
x )2vθ + cθ eeq

x eeq
y vθ − eeq

z sθ eeq
x eeq

z vθ + eeq
y sθ

eeq
x eeq

y vθ + eeq
z sθ (eeq

y )2vθ + cθ eeq
y eeq

z vθ − eeq
x sθ

eeq
x eeq

z vθ − eeq
y sθ eeq

y eeq
z vθ + eeq

x sθ (eeq
z )2vθ + cθ


 . (5.46)

cθ and sθ are shorthand notations for cos(θ) and sin(θ), respectively. vθ is the “verse of theta,” which is equal to
1 − cθ.

rotation
axis

Z

X
Y

40o

40o

40o

exey

R(Y,-β)

R(Z,-α)

R(Z,α)

R(Y,β)

R(X,40o)

Figure 5.9: Rotation about an arbitrary axis is equivalent to a sequence of five rotations about the fixed axes.

5.4.2 Inverse relation

The transformations from rotation matrix to equivalent axis parameters are deduced from Eq. (5.46), via the
following observations, [5, 7, 11, 16]:

1. The sum of the diagonal elements of R(eeq, θ) (i.e., its trace) is

trace (R(eeq, θ)) = 1 + 2cθ. (5.47)

Hence

θ = arccos

(
trace (R(eeq, θ)) − 1

2

)
. (5.48)

This inverse has two solutions; the second one is found from the first by rotating in the other sense of the
equivalent axis, and over the negative equivalent angle. The equivalent rotation angle can also be considered as
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the magnitude of the angular velocity about the equivalent axis that yields the given rotation matrix if applied
during one unit of time.

2. Subtracting pairs of off-diagonal terms gives

R32(e
eq, θ) − R23(e

eq, θ) = 2eeq
x sθ,

R13(e
eq, θ) − R31(e

eq, θ) = 2eeq
y sθ,

R21(e
eq, θ) − R12(e

eq, θ) = 2eeq
z sθ.

(5.49)

These equations cannot be inverted for θ = 0 or θ = π. However, these cases are trivially recognized from the
rotation matrix. If θ /∈ {0, π}, the equivalent axis unit vector is

eeq =
1

2sθ




R32(e
eq, θ) − R23(e

eq, θ)

R13(e
eq, θ) − R31(e

eq, θ)

R21(e
eq, θ) − R12(e

eq, θ)


 . (5.50)

Note that these equations are numerically not very well conditioned for θ ≈ 0 and θ ≈ π!

Logarithm. The procedure above also produces the “logarithm” of a rotation matrix, i.e., the angular velocity
that generates the given rotation matrix in one unit of time. Recall that the exponential maps elements from the
“tangent space” (i.e., velocities) to the manifold; the logarithm is a mapping in the opposite sence.

5.4.3 Time derivative

Equation (5.45) gives the relationship between a rotation about the arbitrary axis along eeq and the same rotation
about the X-axis of the inertial frame. Using Eq. (5.20) for the time derivative of a rotation matrix yields the
relationship between the corresponding angular velocities ωeq and ωx about both axes:

[ωeq] = Ṙ(eeq, θ) R−1(eeq, θ)

=
{

R(Z,−α)R(Y,−β)Ṙ(X, θ)R(Y, β)R(Z,α)
} {

R(Z,−α)R(Y,−β)R(X, θ)R(Y, β)R(Z,α)
}

= R(Z,−α)R(Y,−β) [ωx] R(Y, β)R(Z,α). (5.51)

5.4.4 Similarity transformations

The procedure applied in deriving Eq. (5.45) works for general transformations too, not just rotations about
frame axes. So, the following Chapters of this book will often use these

Fact-to-Remember 34 (Similarity transformations)
Often, a general transformation T can be written as

T = S−1T ′S, (5.52)

where S and T ′ are (sequences) of elementary (invertible) transformations; T ′ is of the
same “type” as T . In the section above, the elementary transformations are rotations
about frame axes.
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Exponential of general angular velocity. A first example of this similarity transformation principle is the
exponential of an angular velocity about an arbitrary axis with direction vector eeq. Section 5.2.10 proved that
any rotation about one of the frame axes corresponds to the exponentiation of an angular velocity about this
axis, Eq. (5.21). According to Eq. (5.45), a rotation R(eeq, θ) about the axis eeq over the angle θ can be written
in the form of Eq. (5.52), with the matrix S (corresponding to the transformation S) equal to R(Y, β)R(Z,α)
and, similarly, T ′ = R(X, θ) = exp(A), with A = [ωx] the skew-symmetric matrix corresponding to the angular
velocity that makes the X axis rotate over the angle θ in one unit of time. Equation (5.22) and (5.51) then imply
that

R(eeq, θ) = S−1 exp(A)S

= S−1

(
1 + A +

A2

2!
+ . . .

)
S

= 1 +
(
S−1AS

)
+

S−1ASS−1AS

2!
+ . . .

= exp
(
S−1AS

)

= exp ([ωeq]) . (5.53)

ωeq is the angular velocity about the initial arbitrary axis eeq that generates the rotation over an angle θ in one
unit of time. Hence, the exponential formula is valid for angular velocities about arbitrary axes.

5.4.5 Distance between two orientations

The distance between two orientations (and hence, the distance between the two corresponding rotation matrices,
R1 and R2) can be defined independently of the chosen representation, [16, 19]. (Hence, it is a structural

property of relative orientations.) First, take the relative orientation R =
(
R1

)−1
R2. As described in the

previous paragraphs, R corresponds to a rotation about an equivalent axis eeq, over an angle θ. Now,

Fact-to-Remember 35 (Logarithm is distance function on SO(3))
The distance between two orientations R1 and R2 is the equivalent angle of rotation (or the

logarithm) of the relative orientation R =
(
R1

)−1
R2. It is the magnitude of the angular

velocity that can close the orientation gap in one unit of time.

It can be proved that this rotation angle is smaller than the sum of any set of angles used in other orientation
representations, such as for example Euler angle sets. Note the similarity of this property to the case of the
Euclidean distance between points, with (i) the composition of rotations (i.e., matrix multiplication in the case of
rotation matrix representation) replaced by composition of position (i.e., addition of vectors) and (ii) the inverse
replaced by the negative.

5.5 Unit quaternions

The previous Sections presented rotation matrices (that have no coordinate singularities, but use much more
parameters than strictly necessary), and Euler angle sets (that suffer from coordinate singularities, but use only
the minimal number of parameters). This Section presents yet another representation, that has become popular
because it is an interesting compromise between the advantages and disadvantages of both other representations.
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5.5.1 Definition and use

Another interesting orientation representation is the four -parameter set of unit quaternions, also called Euler-
(Rodrigues) parameters, [4, 26]:

Fact-to-Remember 36 (Unit quaternions)
If the equivalent axis eeq of a rotation is known, as well as the corresponding equivalent
rotation angle θ, then the unit quaternion q representing the same rotation is defined as
the following four-vector:

q(eeq, θ) ,

(
qv

q

)
=




s θ

2
eeq

x

s θ

2
eeq

y

s θ

2
eeq

z

c θ

2




. (5.54)

Since, in general, two equivalent rotation angles and axes exist for every rotation
(Sect. 5.4.2), there also exist two quaternions for each single orientation: (qT

v , q)T and
(−qT

v , q)T .

qv is the vector part of the unit quaternion q; q is the scalar part. (Some other references interchange the order
of the vector and scalar parts, but this has no physical meaning nor consequences.) q is called a unit quaternion
because it has “Euclidean” unit two-norm:

qT q = qT
v qv + q2 = 1. (5.55)

Unit quaternions have become quite popular in the robotics community only recently, although the Irish mathe-
matician Sir William Rowan Hamilton (1805–1865) described the quaternions already more than a century ago.
Hamilton indeed wrote a very impressive pair of books about the subject of quaternions [10] even before the
dot product and cross product between three-vectors were introduced by Josiah Willard Gibbs (1839–1903), [6].
The parameterization of rotations by means of quaternions was already described by Olinde Rodrigues in 1840
[8, 23, 29], and even earlier by Johann Carl Friedrich Gauss (1777–1855), who didn’t bother to publish about
them. Hamilton’s original goal was to come up with a generalization of the complex numbers: while the set
of complex numbers is generated by the two numbers 1 and i ,

√
−1, the quaternions have four generating

four-vectors 1, i, j and k:

i , q(ex, π) =




1
0
0
0


 , j , q(ey, π) =




0
1
0
0


 ,k , q(ez, π) =




0
0
1
0


 ,1 , q(×, 0) =




0
0
0
1


 . (5.56)

So, i, j and k correspond to rotations over an angle π about the X,Y and Z axes, respectively; 1 corresponds to
the unit rotation matrix. These four generators have algebraic properties that are a generalization of the complex
number generators 1 and i:

ij = k, ij = −ji, ii = −1, (5.57)

plus all cyclic permutations.
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Why quaternions? The following fact states the most prominent reason to use quaternions in robotics:

Fact-to-Remember 37 (Singularity free)
A unit quaternion is the orientation representation with the smallest number of parameters
that can represent all orientations without singularity, [1, 28]. This means that one can
move between any two orientations in a smooth way, i.e., with only smooth changes in the
quaternion parameters.

This fact has important consequences for trajectory generation (also called path planning): without knowing
in advance the initial and final orientations of the robot, one will never encounter a singularity when using a
quaternion representation to interpolate between these two orientations. (Recall that this is not true for Euler
angle interpolation.) Moreover, since we defined quaternions in Eq. (5.54) in terms of the equivalent axis and the
equivalent rotation angle, interpolation of orientations by means of quaternions boils down to interpolating the
equivalent rotation angle about the equivalent axis. Besides these definite advantages, one does have to keep in
mind the following “problems”:

1. The two-to-one orientation representation, Fact 36. Hence, it is important to choose the correct sign during
continuous interpolation problems, since all switches between the two alternatives would cause jumps in the
generated trajectory in “quaternion configuration space.”

2. Bad numeric conditioning (for equivalent rotation angles of about 0 or π) of the problem of extracting the
equivalent axis from a rotation matrix, Eq. (5.50).

5.5.2 Multiplication of quaternions

Rotations correspond to a somewhat unusual multiplication of quaternions. This Section presents quaternion
multiplication; the next Section will make the link with rotation matrices.

Two quaternions q1 = x1i + y1j + z1k + s1 and q2 = x2i + y2j + z2k + s2 are multiplied according to the
algebraic rules in Eq. (5.57):

q1q2 =




y1z2 − y2z1 + x1s2 + x2s1

z1x2 − z2x1 + y1s2 + y2s1

x1y2 − x2y1 + z1s2 + z2s1

s1s2 − x1x2 − y1y2 − z1z2




. (5.58)

(See e.g., [7, 10, 11, 15, 17, 18] for more detailed algebraic discussions.) The right-hand side can be re-organised
in a scalar part and a vector part:

q1q2 =




0

0

0

s1s2




−




0

0

0

x1x2 + y1y2 + z1z2




+ s1




x2

y2

z2

0




+ s2




x1

y1

z1

0




+




y1z2 − y2z1

z1x2 − z2x1

x1y2 − x2y1

0




(5.59)

=
(
q1q2 − q1

v · q2
v

)
+

(
q1q2

v + q2q1
v + q1

v × q2
v

)
. (5.60)

This shows more clearly that the quaternion product of four-vectors is a generalization of the more familiar
dot product (second term) and cross product (last term) of three-vectors. The quaternion product can also be
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represented by a matrix multiplication, [13, 15] (which is alway handy to compose operations):

q1q2 = Q1
l q

2 = Q2
rq

1, (5.61)

with

Q1
l ,




s1 −z1 y1 x1

z1 s1 −x1 y1

−y1 x1 s1 z1

−x1 −y1 −z1 s1


 , Q2

r ,




s2 z2 −y2 x2

−z2 s2 x2 y2

y2 −x2 s2 z2

−x2 −y2 −z2 s2


 . (5.62)

Qi denotes the matrix corresponding to the quaternion qi. The subscripts “l” and “r” indicate whether the
quaternion corresponding to the matrix multiplies on the left or on the right, respectively. Both “l” and “r”
matrices are orthogonal, since the corresponding quaternions are unit quaternions. Hence, q−1 = (−qv q)T is the
inverse of q = (qv q)T , and

Q(q−1) = QT (q), Q−1
r = QT

r , Q−1
l = QT

l . (5.63)

5.5.3 Unit quaternions and rotations

We now have sufficient algebraic definitions to describe how a quaternion operates on a three-vector to execute
a rotation. First, re-define formally a three-vector p as a four-vector quaternion p = (p 0)T . (Note the obvious
abuse of notation!) Then, the transformation of p into p′ by the rotation represented by q is given by, [11, 15],

p′ = qpq−1, p′ = QlQ
T
r p. (5.64)

Indeed, for q = (s θ

2
eT c θ

2
)T , Ql and Qr are given by

Ql =




c θ

2
−s θ

2
ez s θ

2
ey s θ

2
ex

s θ

2
ez c θ

2
−s θ

2
ex s θ

2
ey

−s θ

2
ey s θ

2
ex c θ

2
s θ

2
ez

−s θ

2
ex −s θ

2
ey −s θ

2
ez c θ

2




, (5.65)

and Qr =




c θ

2
s θ

2
ez −s θ

2
ey s θ

2
ex

−s θ

2
ez c θ

2
s θ

2
ex s θ

2
ey

s θ

2
ey −s θ

2
ex c θ

2
s θ

2
ez

−s θ

2
ex −s θ

2
ey −s θ

2
ez c θ

2




. (5.66)

Hence, Eq. (5.64) gives

p′ =




c2
θ

2

− s2
θ

2

(e2
z + e2

y − e2
x) −2(c θ

2
s θ

2
ez + s2

θ

2

exey) 2(c θ

2
s θ

2
ey + s2

θ

2

exez) 0

2(c θ

2
s θ

2
ez + s2

θ

2

exey) c2
θ

2

− s2
θ

2

(e2
z + e2

x − e2
y) −2(c θ

2
s θ

2
ex − s2

θ

2

eyez) 0

−2(c θ

2
s θ

2
ey − s2

θ

2

exez) 2(c θ

2
s θ

2
ex + s2

θ

2

eyez) c2
θ

2

− s2
θ

2

(e2
y + e2

x − e2
z) 0

0 0 0 1




p. (5.67)

With the obvious substitutions c2
θ

2

− s2
θ

2

= cθ, and 2s2
θ

2

= 1 − cθ = vθ, this result is equivalent to Eq. (5.46), as

could have been expected since this equation represents the rotation matrix for a rotation about the equivalent
axis. Note that quaternion multiplication is associative, i.e., q1(q2q3) = (q1q2)q3. (Check this!)
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5.5.4 Quaternion time rates and angular velocity

It was already mentioned earlier in this Chapter that the angular velocity three-vector cannot be calculated as the
time derivative of any three-vector orientation representation. Also for quaternions the relationship between the
time rate of the quaternion q and the corresponding angular velocity ω is not trivial, and requires an integrating
factor. However, the relation follows straightforwardly from Eqs (5.18) and (5.65):

q̇ =
1

2
Ωl q, (5.68)

with Ω the quaternion matrix corresponding to the quaternion vector (ωT 0)T .

Inverse relation The inverse of this relation follows from the following two observations:

1. Ωlq = Qr(ω
T 0)T , Eq. (5.61), and

2. Q−1
r = QT

r , Eq. (5.63).

Hence (
ω

0

)
= 2QT

r q̇. (5.69)

2QT
r is the integrating factor. Note that the forward and inverse relationships (5.68) and (5.69) never become

singular, while this is not the case for the Euler angle sets, see, for example, Eq. (5.41).
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Chapter 6

Pose coordinates

6.1 Introduction

A rigid body in E3 has six degrees of freedom: three in translation and three in rotation. Chapter 5 has discussed
these last three degrees of freedom separately; this Chapter integrates them with the translations, following much
the same route as in Chapter 5.

Coordinate representations containing six parameters have been developed over the years. However, the
fundamental geometric properties of rigid body motion as described in Chapter 3 cannot be represented by
classical six-vector vector spaces (i.e., with addition and/or multiplication of six-vectors as the standard operators
in these spaces). One noteworthy exception is the velocity of a rigid body: this can be represented by a six-vector,
i.e., a screw, or rather, a twist. Recall from Chapter 3 that the definition of velocity and acceleration used in this
text is the following: the minimum information one needs to find the velocity and acceleration of any point moving
together with the body. So, this Chapter describes what this minimum information is for different coordinate
motion representations.

One often uses a non-minimal matrix representation to represent the properties of rigid body motion. The
same trade-offs exist as in the previous Chapters: improved properties on the one hand, but extra cost because
of the need to carry along a number of constraints on the other hand.

6.2 Homogeneous transform

Orientations and their representations are not very intuitive in more than one respect. However, extending the
description to include translations turns out to require only a minor extra effort.
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6.2.1 Definition and use

Fact-to-Remember 38 (Pose representation)
The pose (i.e., relative position and orientation) of a frame {b} with respect to a frame

{a} can be represented by (i) the position vector ap
a,b of the origin of {b} with respect to

the origin of {a} and expressed with respect to {a}, plus (ii) the orientation matrix b
aR

of {b} with respect to {a}. These are often combined into a 4 × 4 pose (matrix) b
aT (or

homogeneous transformation matrix, or homogeneous transform, for short):

b
aT ,

(
b
aR ap

a,b

0 1×3 1

)
. (6.1)

b
aT is the coordinate representation of a point in SE(3), or, equivalently, the representation of a frame in E3.
Although at first sight it might look a bit strange, this matrix representation is particularly interesting since, if
the coordinates of a point p are known with respect to {b} (i.e., the coordinate vector bp is known), the point’s
coordinates with respect to {a} (i.e., ap) are calculated as

(
ap

1

)
= b

aT

(
bp

1

)
. (6.2)

This is obvious from Fig. 6.1. Note that Eq. (6.2) extends the position three-vectors ap and bp into four-vectors, by
adding a constant “1” row, i.e., the vectors are made homogeneous. Hence, the name of this pose representation.

6.2.2 Active and passive interpretation

As for rotations and orientations (Sect. 5.2.3), one can interpret a homogeneous transformation matrix both
actively and passively. The passive interpretation is often connected to the terminology “pose,” while the termi-

fag fbgap bppa;b
Figure 6.1: Frame {b} moves with respect to frame {a}. The point p moves together with{b}.
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nology “displacement” suggests an active interpretation.

6.2.3 Uniqueness

From the definition (6.1) of the homogeneous transformation matrix, and the uniqueness property of the rotation
matrix (Fact. 25), the following fact is obvious:

Fact-to-Remember 39 (Uniqueness)
A homogeneous transformation matrix is a unique and unambiguous representation of the
relative pose of two right-handed, orthogonal reference frames in the Euclidean space E3.
This means that one single homogeneous transformation matrix corresponds to each relative
pose, and each homogeneous transformation matrix represents one single relative pose.

6.2.4 Inverse

Given the simple formula for the inverse of a rotation matrix, Eq. (5.7), it is straightforward to check that the
inverse of a homogeneous transformation matrix b

aT is

b
aT

−1 =

(
b
aR

T −b
aR

T
ap

a,b

0 1×3 1

)
. (6.3)

Note that constructing b
aT

−1 from b
aT needs nothing more complicated than one simple matrix multiplication.

6.2.5 Non-minimal representation

A direct consequence of the non-minimality of the rotation matrix (Fact 27) is that

Fact-to-Remember 40 (Non-minimal representation)
A homogeneous transformation matrix is not a minimal representation of a pose. Again,
the advantage is that it has no coordinate singularities.

6.2.6 Isometry—SE(3)

Just as rotation matrices (Sect. 5.2.7), homogeneous transformation matrices are isometries of the Euclidean
space, since they maintain angles between vectors, and lengths of vectors. Moreover, right-handed frames are
mapped into right-handed frames, and the determinant of homogeneous transformation matrices is +1. Their
algebraic properties correspond to those of the Lie group SE(3), Sect. 3.3.

6.2.7 Compound poses

The same reasoning as in Sect. 5.2.8 leads straightforwardly to the formula for composition of pose transforms.
For example, knowing the pose tl

eeT of the “tool” frame {tl} with respect to the “end effector” frame {ee}, and
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ee
bsT of frame {ee} with respect to the “base” frame {bs}, gives the pose tl

bsT of the tool with respect to the base
as

tl
bsT = ee

bsT
tl
eeT . (6.4)

This equation is easily checked, for example, by calculating the coordinates of a point in three reference frames,
i.e., a procedure similar to the one used to derive Eq. (6.2) and illustrated in Fig. 6.1.

6.3 Finite displacement twist

Equation (6.1) uses a 4× 4 matrix to represent a pose. Of course, other orientation representations could be used
instead of the rotation matrix. Hence, one frequently encountered alternative for a homogeneous transformation
matrix is the finite displacement twist, which is the following six-vector:

td =
(
α β γ x y z

)T
, (6.5)

with α, β, and γ a set of Euler angles (of any possible type), and x, y, and z the coordinates of a reference point
on the rigid body. Recall however, from Section 3.3, that the finite displacement twist is not a screw: the first
three components are an Euler angle set, which is not a member of a vector space, Sect. 5.3.4. On the other hand,
the infinitesimal displacement twist is a screw, Eq. (4.15).

6.4 Time derivative of pose—Derivative of homogeneous transform

Figure 6.1 sketches a moving rigid body, or rather the motion of the reference frame {b} attached to this body.
The origin of this frame traces a curve in E3; equivalently, the rigid body traces a curve in SE(3). This Section is
interested in representing the first order kinematics (i.e., the velocity) of the moving body. To this end, consider
an arbitrary point p that moves together with the moving body. The coordinates of this point with respect to
{b} are known and constant; its coordinates with respect to the world frame {a} are found from Eq. (6.2):

ap = b
aR bp + ap

a,b.

The time derivative of this coordinate transformation (i.e., of the left-translated curve) is straightforward to
calculate, given the time derivative of the rotation matrix, Eq. (5.20):

aṗ = b
aṘ bp + aṗa,b, (6.6)

= b
aṘ

(
b
aR

T (ap − ap
a,b)

)
+ aṗa,b,

= [aω] ap + aṗa,b − [aω] ap
a,b. (6.7)

ω is the angular velocity three-vector of the moving body. [ω] is the skew-symmetric matrix corresponding to
taking the vector product with ω, Eq. (5.19). Hence:

(
aṗ

0

)
= b

aṪ
b
aT

−1

(
ap

1

)
, with b

aṪ =

(
b
aṘ aṗ

a,b

01×3 0

)
. (6.8)

(Compare to Eq. (5.17).) In Eq. (6.8), the operator Ṫ T−1 works linearly on the coordinates of the point fixed
to the moving body. Equation (6.7) can also be written as

aṗ = [aω] ap + av0, (6.9)
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with av0
∆

= aṗa,b − [aω] ap
a,b the velocity of the point on the moving body that instantaneously coincides with

the origin of the reference frame {a} (Fig. 6.2). This yields a relationship that is similar to the corresponding
relationship Eq. (5.20) for rotations:

b
aṪ

b
aT

−1 =

(
[aω] av0

01×3 0

)
. (6.10)

fbgpa;bfag _pa;b! � _pa;b ! _pa;bv0
Figure 6.2: v0 is the velocity of the point of the moving rigid body that instantaneously coincides with the origin
of the world frame {a}. It is the sum of (i) the translational velocity of the origin of the moving frame {b}, and
(ii) the translational velocity generated by the angular velocity ω working on the moving body at a distance pa,b

from the origin.

The determinant of [ω] is always zero. This means that, for a general motion, there is no point p with zero
velocity ṗ. Indeed, the set of three linear equations in Eq. (6.9) doesn’t have a solution p for ṗ = 0, since the
coefficient matrix of p is not of full rank.

The factor T−1 corresponds to the left translation of the tangent vector Ṫ to the origin, Sect. 3.4 (although
it appears on the right-hand side of the product). One can follow a similar reasoning, but now expressing the
velocity of the moving point with respect to the body-fixed reference frame {b}. This would yield an element of
se(3) by right translation of Ṫ : T−1Ṫ .

6.5 Time derivative of pose—Twists

Although Ṫ T−1 in Eq. (6.10) is a 4 × 4 matrix, its complete information contents can be represented in two
three-vectors: ω and v0. These two three-vectors together form the six-vector t = (ωT vT

0 )T that was called a
(screw) twist in Sect. 3.8, and that is a member of se(3), the tangent space to SE(3) at the identity element. We
represent a screw twist by the following six-vector:

t =

(
ω

v0

)
. (6.11)

In this representation, adding rigid body velocities corresponds to adding twist vectors. A second six-vector
alternative for representing rigid body velocity is extracted from Ṫ in Eq. (6.8):

t =

(
ω

ṗa,b

)
. (6.12)

The fact that this six-vector comes directly from the time derivative of a homogeneous transformation matrix (or
pose), inspired the following (non-standard) terminology:
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Fact-to-Remember 41 (Screw twist vs. Pose twist)
The linear velocity three-vector in a pose twist represents the translational velocity of the
origin of {b} with respect to the origin of the world reference frame {a}, Eq. (6.12).
The linear velocity three-vector in a screw twist represents the velocity of the point that
instantaneously coincides with the origin of {a}, Eq. (6.11).
A body-fixed twist is a screw twist for which the world reference frame instantaneously
coincides with {b}.

Pose twists and body-fixed twists are probably more often used in robot control software than screw twists. A
closer look at all these twists reveals why “screw twists” (i.e., members of the “tangent space at the identity,”
Sect. 3.4) are more appropriate (from a computational view) than “pose twists” (i.e., members of the tangent
spaces at arbitrary elements on SE(3)):

Fact-to-Remember 42 (Screw twist vs. Pose twist (cont’d))
From the six numbers in the screw twist, one can deduce the position and orientation of the
instantaneous screw axis; this is not possible when using the six numbers in the pose twist.

Indeed, take the scalar product of both three-vectors in the twist. For a screw twist, this gives:

ω ·
(
ṗa,b + pa,b × ω

)
= ω · ṗa,b,

since the vector product is always orthogonal to ω. If one takes the position vector pa,b as the vector of the point
on the ISA closest to the origin, then ω and ṗa,b are parallel: the angular velocity is parallel to the linear velocity
of a point on the ISA, since both velocities are parallel to the ISA. Hence, the scalar product above gives the
projection of ṗa,b on ω, and since both are parallel this yields all information about ṗa,b too. So, the complete
motion information is found in the six numbers of the screw twist: the position and orientation of the ISA, and
the angular and linear velocities on this ISA.

A similar scalar product operation on the pose twist cannot give information about the ISA, since one can
say nothing about the relative orientation of ω and ṗa,b.

Taking the vector product (instead of the scalar product, as done above) of both three-vectors in the twist
gives:

ω ×
(
ṗa,b + pa,b × ω

)
= −[ω][ω]pa,b.

The left-hand side is a known tree-vector. So, this might suggest that one can solve for pa,b, but this is not the
case: the matrix [ω] has vanishing determinant, and is hence not of full rank and not invertible.

In summary, the pose twist can only be used to construct the ISA if the three-vector pa,b is given as extra
information. The terminology “screw twist,” “pose twist,” and “body-fixed twist” is not in general use: most
references just use one of these three representations and call it a “twist” (or “(generalized) velocity”), without
explicitly telling the reader which one is being used.

6.5.1 Order of three-vectors in twist representation

When reading the robotics literature, it is important to know that different authors use a different order of the
three-vectors in the coordinate representations of twists and wrenches:

t =

(
v

ω

)
, and w =

(
f

m

)
, (6.13)
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or

t =

(
ω

v

)
, and w =

(
f

m

)
. (6.14)

The order is not a structural property of rigid body twists! This text uses the last convention. The reason
is that with this representation, screw twists and screw wrenches transform in exactly the same way, i.e., as
screws; in the alternative representation (6.13), one must introduce two different transformation matrices for
twists and wrenches. This has, however, also an important advantage: twists and wrenches are two different
things (Sect. 3.9), and using different transformation equations for both emphasizes this difference.

6.5.2 Invariants

The previous paragraphs explain some differences between coordinate representations, but one should not lose
sight of the fact that they all describe the same physical motion. Hence, they all have the same geometrical
invariants, as introduced already in Chapter 3:

Invariants of rigid body motion. Physically, the finite or instantaneous motion of a rigid body is represented
by the following invariants: (i) the screw axis, (ii) the translation or translational velocity vector of a point on
the screw axis, (ii) the angular rotation or rotation velocity vector about the screw axis, and (iv) the ratio of the
translational and angular vectors, which is called the pitch. Recall that the pitch has the physical dimensions of
length. “Invariant” means that these things don’t change under (i) a change of reference frame, (ii) a change of
coordinate twist representation (e.g., screw twist to pose twist), and (iii) a change of physical units (e.g., meters
to inches).

Invariants of force on rigid body. Physically, the force and moment exerted on a rigid body is represented
by the following invariants: (1) the screw axis, (2) the linear force vector acting on the body, (3) the torque felt
in a point on the screw axis, and (4) the pitch which is the ratio of the torque and force vectors.

6.5.3 Exponential and logarithm

Section 3.5 introduced the concept of the exponentiation that maps a twist (i.e., a rigid body velocity) onto a
finite displacement (i.e., a pose): exp : se(3) → SE(3), t 7→ T . Equation (5.21) gave a coordinate representation
for the exponential map in the case that the twist is a pure rotation. Since the time derivative of screw twists (or
rather, of the corresponding 4 × 4 matrix) obey the same differential equation, Eq. (6.10), as the time derivative
of rotation matrices, Eq. (5.20), a similar exponentiation formula works for twists and displacements too: the

matrix exponential of the matrix corresponding to a screw twist t = (aω
T

av
T
0 )T ∆

= (ωx ωy ωz vx vy vz)
T is the

pose T :

T = exp

(
[aω] av0

01×3 0

)
. (6.15)

This works for screw twists only, since the exponential is only well defined on se(3).
The logarithm of a finite displacement is also a well-defined, hence structural, operation, [14, p. 414]. The

result of the logarithm operation on a finite displacement is the screw twist that generates this displacement in
one unit of time. When using a homogeneous transformation matrix for the displacement, the logarithm of this
matrix gives the screw twist in the form of the argument of the exponential function in Eq. (6.15).
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6.5.4 Canonical coordinates

The previous Section showed how to represent a finite displacement as the exponential of a twist. This approach
leads to two different sets of so-called canonical coordinates:

1. The six canonical coordinates of the first kind, [9, 14, 18], represent the velocity that must be given to the world
reference frame in order to make it coincide, after one unit of time, with the reference frame on the rigid body
at its current pose.

2. The six canonical coordinates of the second kind represent the same displacement as the composition of six
elementary exponentiations:

T = exp
(
(ω′

x 0 0 0 0 0)T
)

exp
(
(0 ω′

y 0 0 0 0)T
)

exp
(
(0 0 ω′

z 0 0 0)T
)

exp
(
(0 0 0 v′

x 0 0)T
)

(6.16)

exp
(
(0 0 0 0 v′

y 0)T
)

exp
(
(0 0 0 0 0 v′

z)
T
)
.

This is an example of the composition of transformation matrices, Eq. (6.4), since each of the exponentiations
gives a transformation matrix. The first three give pure rotations (about the moving axes of an orthogonal
frame, hence an XYZ Euler angle representation of the orientation), and the last three are pure translations
(also along moved axes):

T = R(X,ω′
x)R(Y, ω′

y)R(Z, ω′
z)Tr(X, v′

x)Tr(Y, v′y)Tr(Z, v′z), (6.17)

with R(X,ω′
x) the homogeneous transformation matrix corresponding to a pure rotation about the X axis over

an angle ω′
x, and Tr(X, v′

x) the homogeneous transformation matrix corresponding to a pure translation along
the X axis over a distance v′

x. (This distance is the product of velocity with time, but the time period is “1,”
by definition.)

6.5.5 Infinitesimal displacement

As in most other engineering sciences, robotics often uses “infinitesimal” quantities to describe geometric entities
that are “very close” to each other. The infinitesimal displacement twist, denoted by t∆, and the infinitesimal
transformation matrix, denoted by T∆, both describe small differences in pose. As in the case of small rotations
(Sect. 5.2.11), these infinitesimal displacements are derived by stopping the Taylor series of the exponential in
Eq. (6.15) after the linear term. This gives:

t∆ =




δx

δy

δz

dx

dy

dz




, T∆ =




1 −δz δy dx

δz 1 −δx dy

−δy δx 1 dz

0 0 0 1


 . (6.18)

dx, dy and dz are small translations along the X,Y and Z axes, respectively; δx, δy and δz are small rotations about
the axes. The exponential used above is only well defined for screw twists, Eq. (6.11). However, infinitesimal
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pose twists can be defined by the same equations (6.18); the meaning of the three-vector (dx dy dz)
T changes

accordingly.

6.6 Representation transformation

This Section describes how the coordinate representations of the geometric entities introduced in this Chapter
and in previous Chapters transform under a change of reference frame. These transformations are important in
the kinematic and dynamic descriptions of robotic devices. For example, calculating the end effector velocity of
a serial robot arm when all joint velocities are given, requires the summation of the end effector velocities caused
by each joint independently: these independent joint velocities are easily expressed in the reference frames at the
joints themselves, but must then be transformed to a common world reference frame before they can be added.

Another important motivation to study the transformations between different coordinate representations of
the same structural concepts is the principle of invariance: theoretical and/or practical results derived in the
framework of one particular coordinate representation should describe the same things when transformed into
another coordinate representation. This statement might seem trivial, but nevertheless many publications in the
robotics literature violate this principle, [5, 6, 13]. Minimum sets of invariants were summarized in Sect. 6.5.2.

For rigid body entities, two reference changes are relevant: (i) a change of the world reference frame, or (ii) a
change of the rigid body reference frame, Fig. 6.3.

p f,b

pi,b

p f,i

{f} {i}

pw,f

pf,i

pw,i

{w}

{f}{b}

{i}

Figure 6.3: Transformations of screw-like geometric entities under a change of world and body-fixed reference
frames, respectively.

6.6.1 Three-vector transformation

Free three-vectors have the simplest transformation: if the “initial” world reference frame {i} is described with
respect to a “final” world reference frame {f} through the homogeneous transformation matrix

i
fT =

(
i
fR fpf,i

0 1×3 1

)
,

the components of the free three-vector v transform as

fv = i
fR iv. (6.19)

Point vector components transform as (
fp

1

)
= i

fT

(
ip

1

)
. (6.20)
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Note that the physical vectors don’t change, but only their coordinates.

6.6.2 Line transformation

A line in Plücker coordinates has a representation Lpl(d,m). Denote the vector from the origin of the frame {i}
to the closest point on the line by pi,l, and similarly denote the vector from the origin of the frame {f} to the
closest point on the line by pf,l. Then, pi,l = d × m/(d · d), Eq. (4.6). Changing the world reference frame from
{i} to {f} implies the following transformations:

1. The direction vector d does not change physically, but its components change if the frames {i} and {f} are not
parallel :

fd = i
fR id. (6.21)

2. The moment vector m changes (the physical three-vector, as well as its coordinates) if the frames have a
different origin:

fm = fpf,l × fd

= (fpf,i + fpi,l) × fd

= fpf,i × (i
fR id) + i

fR
(
ip

i,l × id
)

=
[
fpf,i

]
i
fR id + i

fRim. (6.22)

Combining the transformations (6.21) and (6.22) gives

(
fd

fm

)
=

(
i
fR 0 3[

fpf,i
]

i
fR

i
fR

)(
id

im

)
. (6.23)

Recall that [p] denotes the skew-symmetric matrix that corresponds to taking the vector product with the three-
vector p, Eq. (5.19).

6.6.3 Screw twist transformation

A screw Lsc(d,v) consists of two three-vectors bound to a line. Its coordinates with respect to a reference frame
{i} have been represented as, Eq. (4.12),

is =

(
id

ip
i,l × id + iv

)
,

with pi,l the vector from the origin of reference frame {i} to a point on the screw axis.

Change of world reference frame. As for the line, the components of the direction vector d change according
to Eq. (6.21), under a change of world reference frame from {i} to {f}: fd = i

fR id. The moment components of
the screw coordinates transform as

fm = fpf,l × fd + fv

= (fpf,i + fpi,l) × fd + fv

= fpf,i × (i
fR id) + i

fR
(
ip

i,l × id + iv
)
. (6.24)
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Hence, the transformation matrix of the screw coordinate six-vector turns out to be exactly the same as for the
transformation of a line, [11, 15, 16, 25, 26]. This text calls it the (finite) screw transformation matrix i

fS (or
screw transform for short):

i
fS =

(
i
fR 0 3[

fpf,i
]

i
fR

i
fR

)
. (6.25)

(This name is not standardized!) Since (screw) twists, infinitesimal displacement twists, and wrenches are all
instantiations of a screw, their coordinates all transform with the same screw transformation matrix i

fS from
frame {i} to {f}. Note that:

1. The screw transform can be built from the homogeneous transform with only one matrix multiplication.

2. A finite displacement twist is not a screw, and hence does not transform in this manner.

3. Every screw transformation matrix has unit determinant.

4. The fact that this text chooses the same screw representation for twists and wrenches is not a structural
property, but the consequence of an arbitrary choice.

Inverse of screw transformation matrix. By definition, the inverse of i
fS is given by

(
i
fS

)−1
= f

i S =

(
f
i R 0 3

[
ip

i,f
] f

i R
f
i R

)
. (6.26)

It is easy to check that this is equal to
(

i
fS

)−1
= ∆̃ i

fS
T

∆̃, (6.27)

with ∆̃ as in Eq. (4.18). Equation (6.27) is sometimes called the spatial transpose, [7, 11], and denoted by i
fS

′ or
i
fS

S :

if S =

(
A B

C D

)
then SS =

(
DT BT

CT AT

)
. (6.28)

This definition is attractive in the sence that the 6 × 6 screw transformation matrix is then spatially orthogonal :
it has the same orthogonality conditions as the 3 × 3 rotation matrix (Sect. 5.2, Fact 26).

Infinitesimal transformation If the change in the world reference frame is only infinitesimal (i.e., the frame
changes over an infinitesimal displacement t∆ = (δx δy δz dx dy dz)

T ) the screw transformation matrix S in
Eq. (6.25) becomes an infinitesimal screw transformation matrix S∆, [24, 26]:

S∆(t∆) =




1 −δz δy 0 0 0
δz 1 −δx 0 0 0
−δy δx 1 0 0 0
0 −dz dy 1 −δz δy

dz 0 −dx δz 1 −δx

−dy dx 0 −δy δx 1




. (6.29)
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Active and passive interpretations S and S∆ work on screws, twists, and wrenches: the passive interpre-
tation gives the representations of the same screw in the two frames linked by the transformations; the active
interpretation moves a screw from an initial position to a different final position.

6.6.4 Pose twist transformation

For pose twists (Sect. 6.5), the situation is a bit different. Under a change of world reference frame, the three-
vectors that make up the twist do not change, since the velocity reference point is independent of the world frame.
Only the coordinates of the vectors change because the three-vectors are projected onto another reference frame.
Hence, pose twists transform under a change of world reference frame from the initial frame {i} to the final frame
{f} with the following pose twist transformation matrix i

fP :

f t = i
fP it =

(
i
fR 0 3

0 3
i
fR

)
it. (6.30)

i
fP has also always unit determinant.

Inverse of pose twist transformation The inverse of i
fP is trivial:

( i
fP )−1 =

(f
i R 0 3

0 3
f
i R

)
. (6.31)

Change of reference point on the moving body When the reference frame on the moving body changes,
the origin of this reference frame changes too, and, since the translational velocity part of the pose twist is the
velocity of this origin as seen from the world reference frame, this translational velocity three-vector changes also.
The change is only due to a change in the moment arm of the angular velocity three-vector ω on the screw axis;
the translational velocity three-vector on the screw axis remains unchanged and hence also its coordinates with
respect to the (unchanged) world reference frame. In total, the pose twist transforms under a change of reference
point from the origin of the initial body-fixed reference frame {i} to the origin of the final body-fixed reference
frame {f} as follows:

t
f = i

fM t
i =

(
1 3 0 3[
pf,i

]
1 3

)
t
i. (6.32)

The trailing superscript indicates the reference point for the pose twist. Equation (6.32) is valid with respect to
any world reference frame in which the coordinates of the twists and vectors are expressed.

6.6.5 Impedance transformation

The coordinate transformations of stiffness, damping and inertia matrices (Sect. 3.10) under a change of reference
frame is easily derived from the transformation of the twists and wrenches they act on. For example, the
compliance matrix C works on a wrench w to produce an infinitesimal displacement twist t∆: t∆ = C w. The
transformation of this relation from an initial reference frame {i} to a final reference frame {f} is calculated as
follows:

f t∆ = i
fS it∆

= i
fS (iC iw)

= fC fw. (6.33)
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Hence

fC = i
fS iC

i
fS

−1
. (6.34)

Similar reasonings apply to the stiffness and inertia matrices too. Note that Eq. (6.34) is a similarity transfor-
mation, Fact 34. Such transformations leave the eigenvectors and eigenvalues of the matrices unchanged, [22].
Of course, the coordinate description of the impedance matrices will change, but not the physical mapping they
represent.

6.7 Second order time derivative of pose—Acceleration

Until now, only pose and velocity of rigid bodies in motion have been described, by means of homogeneous trans-
formation matrices and twists. This Section discusses the second-order motion characteristics, i.e., acceleration.
Recall that this means that we’re looking for the minimum information required to calculate the acceleration of
any point rigidly connected to a moving body.

6.7.1 Motor product—Derivative of screw along twist

It is not difficult to find an expression for the time derivative of a screw, if this screw is the twist generated
by a revolute or prismatic joint fixed to a moving rigid body. Indeed, assume the body moves with a twist
t1 = ((ω1)T (v1)T )T , and the twist generated by the joint is t2 = ((ω2)T (v2)T )T with respect to the current
world reference frame. After an infinitesimal time interval ∆t, the body and the joint are transformed by the
infinitesimal screw displacement S∆(t∆ = ∆t t1). Hence, the time derivative of t2 is found as

dt2

dt
= lim

∆t→0

S∆(∆t t1)t2 − t2

∆t

=

([
ω1

]
0

[
v1

] [
ω1

]
)

t
2 (6.35)

, t
1 × t

2. (6.36)

This last relationship is motor product, Sect. 4.5.3

6.7.2 Acceleration of rigid body points

At first sight, the definition of the acceleration of a rigid body is not difficult: just take the time derivative of the
body’s velocity twist, as is done for a moving point. However, this approach misses some important properties of
a rigid body motion, i.e., those caused by the interaction of angular and linear motion components. To make this
explicit, we start from the velocity of an arbitrary point attached to a moving rigid body, Eq. (6.7):

aṗ = [aω] ap + aṗa,b − [aω] ap
a,b.

Taking the time derivative of both sides and using Eq. (6.8) gives

ap̈ = [aω̇] ap + [aω] aṗ + ap̈a,b − [aω̇] ap
a,b − [aω] aṗa,b

= [aω̇] ap + [aω] [aω] ap + ap̈a,b − [aω̇] ap
a,b − [aω] [aω] ap

a,b

= ([aω̇] + [aω] [aω]) ap + aa0, (6.37)
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with aa0 = v̇0 + [aω] av0, and av0 as in Eq. (6.9). These are, respectively, the acceleration and velocity of
the point of the moving body that instantaneously coincides with the origin of {a}. v̇0 is sometimes called
the tangential acceleration; [ω]v0 is the normal acceleration; [aω] [aω]ap is the Coriolis acceleration, [1, 8]. In
general, the determinant of the coefficient matrix of p in Eq. (6.37) does not vanish, such that a point with
instantaneous vanishing acceleration exists: solve for ap from Eq. (6.37), with left-hand side equal to zero. This
point is often called the acceleration centre, or acceleration pole, [2, 3, 10, 19, 21]. The matrix form of Eq. (6.37)
is straightforwardly found from Eq. (6.8), [23]:

(
ap̈

0

)
=

d

dt

(
b
aṪ

b
aT

−1
)(

ap

1

)
+ b

aṪ
b
aT

−1

(
aṗ

0

)

=

(
b
aT̈

b
aT

−1 + b
aṪ

d

dt
(b
aT

−1) + b
aṪ

b
aT

−1b
aṪ

b
aT

−1

)(
ap

1

)

=
(

b
aT̈

b
aT

−1 − b
aṪ

b
aT

−1b
aṪ

b
aT

−1 + b
aṪ

b
aT

−1b
aṪ

b
aT

−1
)(

ap

1

)
. (6.38)

or (
ap̈

0

)
= b

aT̈
b
aT

−1

(
ap

1

)
, with b

aT̈ =

(
([ω̇] + [ω][ω]) b

aR ap̈a,b − [ω]aṗ
a,b − [ω̇]aṗ

a,b

01×3 0

)
. (6.39)

Again, one gets a linear mapping from the coordinates of the point p to its acceleration. However, the angular
velocity of the moving body enters non-linearly in this mapping.

Contrary to what was the case for the velocity analysis of the moving body (Sect. 6.5), the information
contained in T̈ T−1 cannot be reduced to two three-vectors, Sect. 6.4: it contains linear and angular velocity
three-vectors, as well as their time derivatives, so four independent three-vectors in total.

Fact-to-Remember 43 (Rigid body acceleration is not a screw vector)
The acceleration of a moving rigid body cannot be represented in one single six-vector.

6.7.3 Second-order screw axis

The literature on the application of screw theory in kinematics contains a representation of the acceleration of a
rigid body that uses two six-vectors, [3, 21, 20]. These two six-vectors represent two instantaneous screw axes,
Sect. 3.9: (i) the first order ISA that represents the velocity of the body, and (ii) the second order ISA that
represents the velocity of the first ISA (Fig. 6.4). At each instant in time the moving body has, in general, a
different ISA, and together these ISAs generate a ruled surface, called the axode (or axoid) of the motion, [4,
p. 158], [12, 17, 19], [23, p. 240–243]. Two subsequent axodes have a common normal; this common normal is
unique for a general motion, but it degenerates, for example, when the ISA doesn’t change or moves parallel with
itself. The common normal intersects the ISA in the so-called central point. Now, the motion of the ISA can be
modelled by a translation along this common normal, plus a rotation about it. This combination of translation
along, and rotation about, the same line is exactly what a screw axis is. These two ISAs are sufficient to model
all 12 components of the moving body’s acceleration:

1. The linear and angular velocity three-vectors of the body lie on the first order ISA. (This is a screw with 6
components.)

2. This same ISA also contains the angular acceleration α and the linear acceleration a along the ISA itself. (One
needs only 2 extra components for these two vectors, since one knows that they lie on the ISA.)
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Figure 6.4: First order screw axes (ISA) for a general rigid body motion at different instants in time. The common
normal between two subsequent ISAs is the second order screw axis.

3. The second order ISA contains the angular velocity ν of the first order ISA, as well as the linear velocity τ of
the central point. (The second order ISA needs 2 parameters for its representation: one coordinate along the
ISA, describing their intersection point, and one angle describing its orientation about the ISA; ν and τ need
2 more parameters, representing their magnitudes; their direction is already determined by the second order
ISA.)
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Chapter 7

Serial manipulator kinematics

7.1 Introduction

The kinematics of a robotic device studies the motion of the device, without considering the forces that cause
this motion. The relationship between motion and force is the dynamics of robots, Chapt. 10. Kinematics
are important, not only as an indispensable prerequisite for any dynamic description, but also for practical
applications, such as motion planning and singularity analysis. This Chapter presents the displacement and
velocity characteristics of serial kinematics chains. In this context, the major questions are: “What are the
relationships between, on the one hand, the positions and velocities of the robot joints, and, on the other hand, the
position and velocity of the robot’s end-effector?” and “What are the ‘best’ methods to calculate these kinematic
relationships on line, i.e., during the execution of the motion?” This text focusses on the first question. In
addition, it also discusses the statics of serial manipulators, i.e., the static equilibrium between forces on the
robot end-effector and on the joint axes. The duality between forces and velocities, Chapter 3, is extensively used
in this Chapter (and even more in the following Chapter that deals with parallel manipulators). This integrated
analysis of kinematics and statics for rigid bodies and robotic devices is sometimes given the name kinetostatics.

Fact-to-Remember 44 (Basic ideas of this Chapter)
The position and orientation of a robot’s end-effector are derived from the joint positions
by means of a geometric model of the robot arm. For serial robots, the mapping from joint
positions to end-effector pose is easy, the inverse mapping is more difficult. Therefore, most
industrial robots have special designs that reduce the complexity of the inverse mapping. The
most popular designs involve a spherical wrist.

The key geometrical concepts used in this Chapter are (i) the pose representations (homogeneous transform, finite
displacement twist) that describe relative displacements of two rigid bodies in the three-dimensional Euclidean
space, (ii) the screw, in the form of twists and wrenches, that represents relative velocity of two rigid bodies, as
well as generalised forces on a rigid body, and (iii) the reciprocity of screws.

The joint positions, velocities and forces form coordinates on, respectively, SE(3) (i.e., the pose of the end-
effector), se(3) (i.e., the twist of the end-effector), and se∗(3) (i.e., the forces acting on the end-effector). Many
robots have gear boxes between the joints and the actuators that drive these joints. Hence, the position of the
joint is in general different from the position of the motor. Typical gear ratios are in the range 1/10–1/500, with
the motors making more revolutions that the joints.
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“Cartesian coordinate”

Fact-to-Remember 45 (Coordinates)
Two natural coordinate systems are commonly used to describe the motion of an object
manipulated by a serial robot: (i) the “Cartesian” coordinates on SE(3) and its tangent
and co-tangent spaces, and (ii) the joint coordinates.

The previous Chapters discussed Cartesian coordinates; this Chapter discusses the relationships between joint
space and Cartesian space coordinate systems when using a serial robot to move the object.

7.2 Serial robot designs

In its most general form, a serial robot design consists of a number of rigid links connected with joints. Simplicity
considerations in manufacturing and control have led to robots with only revolute or prismatic joints and orthog-
onal, parallel and/or intersecting joint axes (instead of arbitrarily placed joint axes). In his 1968 Ph.D. thesis,
[54], Donald L. Pieper (1941–) derived the first practically relevant result in this context:

Fact-to-Remember 46 (Closed-form inverse kinematics)
The inverse kinematics of serial manipulators with six revolute joints, and with three con-
secutive joints intersecting, can be solved in closed-form, i.e., analytically.

Figure 7.1: A Kuka-160 serial robot. Figure 7.2: A Staubli (formerly Unimation) “PUMA”
serial robot.

This result had a tremendous influence on the design of industrial robots: until 1974, when Cincinnati Milacron
launched its T 3 robot (which has three consecutive parallel joints, i.e., intersecting at infinity, Fig. 7.3), all
industrial manipulators had at least one prismatic joint [76] (see e.g., [71] for an impressively large catalogue)
while since then, most industrial robots are wrist-partitioned 6R manipulators, such as shown in Figures 7.1
and 7.2. They have six revolute joints, and their last three joint axes intersect orthogonally, i.e., they form a
wrist such as, for example, the ZXZ wrist in Fig. 5.5. This way, they can achieve any possible orientation. This
construction leads to a decoupling of the position and orientation kinematics, for the forward as well as the inverse

95



Figure 7.3: The Cincinnati Milacron T 3 serial robot. Figure 7.4: An Adept SCARA robot.

problems. For the three wrist joints, Section 5.2.8 already presented a solution; the remaining three joints are
then found by solving a polynomial of, at most, fourth order, whatever their kinematic structure is, [54]. The
extra structural simplifications (i.e., parallel or orthogonal axes) introduced in the serial robots of, for example,
Figures 7.1 and 7.2, lead to even simpler solutions (Sect. 7.9.2). (Roughly speaking, each geometric constraint
imposed on the kinematic structure simplifies the calculations.) The simplest kinematics are found in the SCARA
robots (Selectively Compliant Assembly Robot Arm), Fig. 7.4. They have three vertical revolute joints, and one
vertical prismatic joint at the end. These robots are mainly used for “pick-and-place” operations. In such a
task, the robot must be stiff in the vertical direction (because it has to push things into other things) and a bit
compliant in the horizontal plane, because of the imperfect relative positioning between the manipulated object
and its counterpart on the assembly table. This desired selective compliance behaviour is intrinsic to the SCARA
design; hence the name of this type of robots.

Design characteristics. The examples above illustrate the common design characteristics of commercial serial
robot arms:

1. They are anthropomorphic, in the sense that they have a “shoulder,” (first two joints) an “elbow,” (third joint)
and a “wrist” (last three joints). So, in total, they have the six degrees of freedom needed to put an object in
an arbitrary position and orientation.

2. Almost all commercial serial robot arms have only revolute joints. Compared to prismatic joints, revolute joints
are cheaper and give a larger dextrous workspace for the same robot volume.

3. They are very heavy, compared to the maximum load they can move without loosing their accuracy: their
useful load to own-weight ratio is worse than 1/10! The robots are so heavy because the links must be stiff:
deforming links cause position and orientation errors at the end-point.

Hybrid designs. A last industrially important class of “serial” robot arms are the gantry robots, Fig. 7.5.
They have three prismatic joints to position the wrist, and three revolute joints for the wrist. Strictly speaking, a
gantry robot is a combination of a parallel XYZ translation structure with a serial spherical wrist. The parallel
construction is very stiff (cf. metal cutting machines) so that these robots are very accurate. In large industrial
applications (such as welding of ship hulls or other large objects) a serial manipulator is often attached to a two
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Figure 7.5: A gantry robot. (Only the
first three prismatic degrees of freedom are
shown.)

Figure 7.6: Notations used in the geometrical model of a serial
kinematic chain.

or three degrees of freedom gantry structure, in order to combine the workspace and dexterity advantages of both
kinematic structures.

Many other designs have been studied and implemented, but this text will stick to structures similar to the
examples above, because:

Fact-to-Remember 47 (Decoupled kinematics of serial robots)
Simplicity of the forward and inverse position and velocity kinematics has always been one
of the major design criteria for commercial manipulator arms. Hence, almost all of them
have a very special kinematic structure that looks like either the SCARA design (Fig. 7.4),
the gantry design (Fig. 7.5), or the 321 design (Fig. 7.9). These designs have efficient
closed-form solutions because they allow for the decoupling of the position and orientation
kinematics. The geometric feature that generates this decoupling is the intersection of joint
axes, Fact 46.

7.3 Workspace

The reachable workspace of a robot’s end-effector (or “mounting plate”) is the manifold of reachable frames, i.e.,
a subset of SE(3). The dextrous workspace consists of the points of the reachable workspace where the robot can
generate velocities that span the complete tangent space tangent space at that point, i.e., it can translate the
manipulated object with three degrees of translation freedom, and rotate the object with three degrees of rotation
freedom, [35, 52].

The relationships between joint space and Cartesian space coordinates of the object held by the robot are in
general multiple-valued : the same pose can be reached by the serial arm in different ways, each with a different
set of joint coordinates. Hence, the reachable workspace of the robot is divided in configurations (also called
assembly modes), in which the kinematic relationships are locally one-to-one.
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7.4 Link frame conventions

Coordinate representations of robotic devices must allow to represent the relative pose and velocity of two neigh-
bouring links, as a function of the position and velocity of the joint connecting both links. This Chapter assumes
that all joints and links are perfectly stiff, such that the kinematic model is purely geometrical, as in Fig. 7.6.
The “base” frame {bs} gets the index “0,” and, for a manipulator with n joints, the end-effector frame has index
“n + 1.” The direction vector ei represents the positive direction of the ith joint axis. The position vector pi,j

connects the origin of link frame {i} to the origin of link frame {j}. These link frames have one of their axes
(usually the Z-axis) along the joint axis. Hence, the origin of these frames lies on the joint axis too.

The link closest to the base is sometimes called the proximal link ; the link to which the end-effector is rigidly
connected is the distal link.

7.4.1 Denavit-Hartenberg link frame convention

Joint axes are (directed) lines, and their representation needs minimally four parameters (Sect. 4.4.2). Figure 7.7
shows the four Denavit-Hartenberg parameters d, α, θ and h for the line Zi, [15, 24], as well as the convention to
define the frame {Xi, Y i, Zi}. The relative pose of {i} with respect to {i − 1} is defined as follows.

1. The joint axis is the Zi axis. This means that the joint coordinate qi = αi if joint i is revolute, and qi = hi

if the joint is prismatic. The positive sense of the axis corresponds to the positive sense of the joint position
sensor.

2. The common normal between Zi and Zi−1 determines the other axes of frame {i}:

• The origin of frame {i} is the intersection of Zi and the common normal.

• The Xi-axis lies along the common normal, with positive sense from the origin of {i − 1} to Zi.

If Zi and Zi−1 are co-planar, the sense of Xi can be chosen arbitrarily. Also for the first (i.e., zeroth) frame,
the X1 direction is arbitrary.

3. The base frame {0} and the end-effector frame {n + 1} cannot be chosen completely arbitrary: they must
coincide with frames {1} and {n}, respectively, when joints 1 and n are in their “zero” position. (This zero
joint position can be chosen arbitrarily.) Often base and end-effector frames are placed at other locations
than {0} and {n + 1}, because the structure of the kinematic chain suggests more “natural” positions for
them; e.g., the end-effector frame is put at the end-point of the last link, or the base frame is put on the
ground instead of on the first joint. However, if one wants to place them arbitrarily, one must use general pose
transformations instead of pose transformations generated with DH parameters, since a DH transform allows
for four independent parameters only.

Note that Xi is chosen to indicate a fixed direction with respect to the part of the joint that is fixed to the previous
joint. That means that the joint value qi can use Xi as “zero” reference: if the joint is revolute, the direction of
Xi is the zero reference; if the joint is prismatic, the position of (the origin on) Xi is the zero reference.
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Link transformation matrix The homogeneous transformation matrix i
i−1T representing the relative pose of

two subsequent link frames {i − 1} and {i} is straightforwardly derived from the DH link frame convention:

i
i−1T = R(Z,αi−1)Tr(Z, hi−1)Tr(X, di) R(X, θi) (7.1)

=




ci−1
α −si−1

α 0 0
si−1

α ci−1
α 0 0

0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 hi−1

0 0 0 1







1 0 0 di

0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 ci

θ −si
θ 0

0 si
θ ci

θ 0
0 0 0 1


 , (7.2)

or

i
i−1T =




ci−1
α −si−1

α ci
θ si−1

α si
θ dici−1

α

si−1
α ci−1

α ci
θ −ci−1

α si
θ 0

0 si
θ ci

θ hi−1

0 0 0 1




. (7.3)

“R(Z,α)” represents the homogeneous transformation matrix that corresponds to the rotation about the Z-axis,
over an angle α (Sect. 5.2.2); “Tr(Z, h)” represents the homogeneous transformation matrix that corresponds to
the translation along Z over a distance h, etc. Note that, in general, the inverse transformation (from a given
arbitrary T to a set of DH parameters α, h, d and θ) does not exist: the four DH parameters cannot represent
the six degrees of freedom of choosing an arbitrary reference frame.

Not all references use the same link frame conventions as outlined above! So be careful when using sets of DH
parameters, and make sure to document all background information about how the parameters are defined.

7.4.2 Hayati-Roberts link frame convention

This section uses the Hayati-Roberts (HR) line convention (Sect. 4.4.4) to represent subsequent links. It is a
substitute for the DH convention in the case of (nearly) parallel lines. Similarly to the DH case, there is no
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unique HR convention! Figure 4.3 showed one possible definition; Figure fig-HR-frames shows another. Two
Euler angles βi and γi, needed to represent the direction of the Zi axis, are not shown. Since the HR convention
is supposed to work when the two joint axes are almost parallel, Roll and Pitch angles are appropriate choices for
βi and γi (Sect. 5.3.3). The following four translations and rotations map the frame on the first joint axis onto
the frame on the second joint axis:

i
i−1T = R(Z,αi−1)Tr(X, di−1) R(Y, γi)R(X,βi). (7.4)

The “common normal” is not used in the HR convention (as it is in the DH convention). The origin of frame {i}
is chosen to lie in the Xi−1Y i−1-plane.

Although the Hayati-Roberts convention avoids the coordinate singularity for parallel joint axes, it has itself
a singularity when joint i is parallel to either Xi−1 or Y i−1 (intersection with XY plane not defined), or when
joint i intersects the origin of frame {i − 1} (αi−1 not defined), [6, 61].

Fact-to-Remember 48 (Link frame conventions)
The Denavit-Hartenberg and Hayati-Roberts link frame conventions define a homogeneous
transformation matrix as a function of four geometric parameters.

7.5 321 kinematic structure

Because all-revolute joint manipulators have good workspace properties, and because a sequence of three inter-
secting joint axes introduces significant simplifications in the kinematic algorithms (Fact 46), most commercial
robot arms now have a kinematic structure as shown in Fig. 7.9. (Vic Scheinman of Stanford University was,
to the best of the authors’ knowledge, the first to come up with this design, but he did not write it up in any
readily accessible publications. . . ) The design is an example of a 6R wrist-partitioned manipulator: the last three
joint axes intersect orthogonally at one point. Moreover, the second and third joints are parallel, and orthogonal
to the first joint. These facts motivate the name of “321” robot arm: the three wrist joints intersect; the two
shoulder and elbow joints are parallel, hence they intersect at infinity; the first joint orthogonally intersects the
first shoulder joint.

The 321 can use a link frame transformation convention that is much simpler [21] than the Denavit-Hartenberg
or Hayati-Roberts conventions because its geometry is determined by orthogonal and parallel joint axes, and by
only four link lengths l1, l2, l3 and l6 (the wrist link lengths l4 and l5 are zero). The reference frames are all
parallel when the robot is in its fully upright configuration. This configuration is also the kinematic zero position,
i.e., all joint angles are defined to be zero in this position. The six joints are defined to rotate in positive sense
about, respectively, the +Z1,−X2,−X3,+Z4,−X5, and +Z6 axes, such that positive joint angles make the robot
“bend forward” from its kinematic zero position. Many industrial robots have a 321 kinematic structure, but it
is possible that the manufacturers defined different zero positions and positive rotation directions for some joints.
These differences are easily compensated by (constant) joint position offsets and joint position sign reversals.

321 kinematic structure with offsets. Many other industrial robots, such as for example the PUMA
(Fig 7.2), have a kinematic structure that deviates a little bit from the 321 structure of Figure 7.9, [13, 65, 76]:

1. Shoulder offset : frame {3} in Figure 7.9 is shifted a bit along the X-axis. This brings the elbow off-centre with
respect to the line of joint 1.
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Figure 7.9: 321 kinematic structure in the “zero” position: all link frames are parallel and all origins lie on the
same line.

2. Elbow offset : frame {4} in Figure 7.9 is shifted a bit along the Y -axis. This brings the wrist centre point
off-centre with respect to the forearm.

The reasons for the offsets will become clear after the Section on singularities (Sect. 7.13): the offsets move the
singular positions of the robot away from places in the workspace where they are likely to cause problems.

7.6 Forward position kinematics

The forward position kinematics (FPK) solves the following problem: Given the joint positions q = (q1 . . . qn)T ,
what is the corresponding end-effector pose? The solution is always unique: one given joint position vector always
corresponds to only one single end-effector pose. The FK problem is not difficult to solve, even for a completely
arbitrary serial kinematic structure.

7.6.1 General FPK: link transform algorithm

The easiest approach to calculate the FPK is to apply the composition formula (6.4) for homogeneous transfor-
mation matrices from the end-effector frame {ee} to the base frame {bs}:

ee
bsT = 0

bsT
1
0T (q1)

2
1T (q2) . . . n

n−1T (qn) ee
nT . (7.5)
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Each link transform can be found, for example, from the Denavit-Hartenberg link frame definition. This approach
works for any serial robot, with any number of revolute and/or prismatic joints. The resulting mapping from joint
angles to end-effector pose is nonlinear in the joint angles. When implementing this procedure in a computer
program, one should, of course, not code the complete matrix multiplications of Eq. (7.5), since (i) the last rows
of the homogeneous transformation matrices are mostly zeros, and (ii) many robots have a kinematic structure
that generates many more zeros in the rest of the matrices too.

7.6.2 Closed-form FPK for 321 structure

Serial manipulators of the 321 type allow for the decoupling of the robot kinematics at the wrist, for position as
well as velocity, and for the forward as well as the inverse problems. This decoupling follows from the fact that
the wrist has three intersecting revolute joints, and hence any orientation can be achieved by the wrist alone.
This Section (and all the following Sections that threat closed-form 321 kinematics) starts by “splitting” the
manipulator at the wrist centre point (reference frame {4} in Fig. 7.9). This has the following advantages:

1. The position and linear velocity of the wrist centre point are completely determined by the first three joint
positions and velocities.

2. The relative orientation and angular velocity of the last wrist frame {6} with respect to the first wrist frame
{4} are completely determined by the three wrist joints.

3. The relative pose of the end-effector frame {7} with respect to the last wrist frame {6} is simply a constant
translation along the Z6-axis. A similar relationship holds between the frames on the base and on the first link.

The following procedure applies this approach to the forward position kinematics:

Closed-form FPK

Step 1 Section 5.3.2 has already calculated the closed-form forward orientation kinematics of the
wrist, since this wrist is an instantiation of a ZXZ Euler angle set, upto the small difference that
the positive sense of the rotation of the second wrist joint is about the −X axis. The resulting
homogeneous transformation matrix from {4} to {6} (of which Eq. (5.27) contains the rotation
part) is repeated here, with the angles α, β and γ replaced by the joint angles q4, q5 and q6, and
taking into account the sign difference for q5:

6
4T =

(
6
4R 0 3×1

0 1×3 1

)
=




c6c4 − s6c5s4 −s6c4 − c6c5s4 −s5s4 0
c6s4 + s6c5c4 −s6s4 + c6c5c4 s5c4 0

−s6s5 −c6s5 c5 0
0 0 0 1


 . (7.6)

Step 2 The pose of the wrist reference frame {4} with respect to the base reference frame {0} = {bs}
of the robot (i.e., 4

0T ) is determined by the first three joints. q2 and q3 are parallel, so they move
the centre of the wrist in a plane, whose rotation about the Z axis of the base reference frame
{bs} is determined by q1 only. q2 and q3 move the wrist to a vertical height dv above the shoulder
reference frame {2} (i.e., dv + l1 above X0Y 0) and to a horizontal distance dh in the arm plane,
i.e., the Y Z-plane of {2} (Fig. 7.10):

dv = c2l2 + c23l3, dh = s2l2 + s23l3, (7.7)
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Figure 7.10: Kinematics of first three joints of the 321 manipulator (Fig. 7.9).

with c2 = cos(q2), c23 = cos(q2 + q3), etc. The contribution of the first three joints to the total
orientation matrix consists of a rotation about Z1, over an angle q1, followed by a rotation about
the moved X2-axis, over an angle q2 + q3. Hence (Sect. 5.2.8):

4
0R =




c1 −s1 0
s1 c1 0
0 0 1







1 0 0
0 c23 −s23

0 s23 c23


 =




c1 −s1c23 s1s23

s1 c1c23 −c1s23

0 s23 c23


 . (7.8)

Step 3 The pose of the end-effector reference frame {7} = {ee} with respect to the last wrist
reference frame {6} (i.e., 7

6T ) corresponds to a translation along Z6 over a distance l6:

7
6T =

(
7
6R l6ez

0 1×3 1

)
=




1 0 0 0
0 1 0 0
0 0 1 l6
0 0 0 1


 . (7.9)

Step 4 Hence, the total orientation ee
bsR follows from Eqs. (7.6), (7.8), and (7.9):

ee
bsR = 7

0R = 4
0R

6
4R

7
6R. (7.10)

Step 5 The position of the wrist centre (i.e., the origin of {4} with respect to the base {0}) is

bsp
wr = 0p

wr =




c1d
h

s1d
h

l1 + dv


 , (7.11)
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and the position of the end-effector (i.e., the origin of {ee} with respect to the base {0}) is

bsp
ee = bsp

wr + ee
bsR (0 0 l6)

T . (7.12)

Step 6 Equations (7.10) and (7.12) yield the final result:

ee
bsT =

(
ee
bsR bsp

ee

0 1×3 1

)
. (7.13)

7.7 Accuracy, repeatability, and calibration

Finding the pose of the end-effector given the actual joint positions relies on a mathematical idealization: in
reality, the mathematical model is not 100% accurate (due to manufacturing tolerances) and the joint positions
are not measured with infinite accuracy. This means that the real pose differs from the modelled pose. The smaller
this difference, the better the absolute (positioning) accuracy of the robot, i.e., the mean difference between the
actual pose and the pose calculated from the mathematical model. Absolute accuracy, however, is not the only
important factor: in most industrial applications, robots are programmed on line, i.e, a human operator moves the
end-effector to the desired pose and then stores the current values of the joint positions in the robot’s electronic
memory. This way, the absolute accuracy is not relevant, but rather the repeatability of the robot, i.e., the (mean)
difference between the actual poses attained by the robot in subsequent (identical) motions to the same desired
pose, whose corresponding joint values have been stored in memory.

Fact-to-Remember 49 (Accuracy—Repeatability)
The robot’s repeatability is much better than its absolute accuracy, typically an order of
magnitude.

For good industrial robots, the repeatability is of the order of 0.1mm. This is the static repeatability, i.e., the
robot moves to the desired pose, and comes to a halt while the robot controller has sufficient time to make the
robot reach this pose as accurately as possible.

Off-line programming and calibration More and more robots are programmed off line. This means that
CAD (Computer Aided Design) drawings of the robot and its environment are used to (i) first interactively
program the robot task on a graphical workstation until the desired functionality is reached, and (ii) then download
the final task program to the robot work-cell. This approach has the advantage that it does not occupy the work-
cell during the programming phase; its disadvantage is that it applies only to workcells in which the robots have a
(very) high absolute accuracy, and the robot’s environment is known with the same accuracy. Since it is expensive
to build robots that correspond exactly to their nominal geometrical models, the practical solution to the absolute
accuracy problem is to calibrate the robot, i.e., to adapt the geometrical model to the real kinematic structure of
the robot, before bringing the robot in operation. (“Intelligent” robots follow an alternative approach: they use
sensors to detect the errors on line and adapt the robot task accordingly.) A typical calibration procedure looks
like this, [6, 25, 46, 68, 62]:

Calibration algorithm
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Step 1 (Error model). One starts from the nominal geometric robot model, and adds a set {P}
of n error parameters. These parameters model the possible geometrical differences between the
nominal and real kinematic structures. Of course, such an error model is a practical trade-off
between (i) accuracy, and (ii) complexity. Common error parameters are offsets on the joint posi-
tions, joint axis line parameters, and base and end-effector frames. For example, ∆α,∆h,∆θ,∆d
in the Denavit-Hartenberg link frame convention.

Step 2 (Data collection). The robot is moved to a large set of N different poses where its end-
effector homogeneous transform ee

bsT m(qi), i = 1, . . . , N is calculated from the measured joint
values and the nominal kinematic model. The number N of sampled poses is much larger than
the number n of error parameters. The real end-effector and/or link frame poses ee

bsT (qi, P ) are
measured with an accurate 3D measurement device (e.g., based on triangulation with laser or
visual pointing systems), [6].

Step 3 (Parameter fitting). The real poses are expressed as a Taylor series in the error parame-
ters Pj , j = 1, . . . , n:

ee
bsT (qi, P ) = ee

bsT (qi, 0) +

n∑

j=1

{∂ (ee
bsT (qi, P )) /∂Pj} Pj + O(P 2). (7.14)

The first term in this series is the pose ee
bsT m(qi) derived from the model. Taking only the first and

second terms into account yields an overdetermined set of linear equations in the Pj . These Pj

can then be fitted to the collected data in a “least-squares” sense. This means that the “distance”
between the collected poses and the predictions made by the corrected model is minimal. Recall
(Fact 7) that no unique distance function for poses exists. In principle, this fact would not influence
the calibration result, since one tries to make the distance zero, and a zero distance is defined
unambiguously for any non-degenerate distance function. However, the distance is never exactly
zero, due to measurement noise and/or an incomplete error parameter set.

Step 4 (Model correction). With the error estimates obtained in the previous step, one adapts
the geometric model of the robot.

The calibration procedure requires (i) the robot to be taken off line for a significant period of time, and (ii)
expensive external measurement devices. However, once calibrated, the adapted geometric model does not vary
much anymore over time. In practice, robot calibration often yields good absolute accuracy, but in a limited
subset of the robot’s workspace only. Note also that, due to the presence of the error parameters, a calibrated
robot always has a general kinematic structure, even if its nominal model is of the 321 type. Hence, calibrated
robots definitely need the numerical kinematic procedures described in this Chapter.

7.8 Forward velocity kinematics

The forward velocity kinematics (FVK) solves the following problem: Given the vectors of joint positions q =
(q1 . . . qn)T and joint velocities q̇ = (q̇1 . . . q̇n)T , what is the resulting end-effector twist tee? The solution
is always unique: one given set of joint positions and joint velocities always corresponds to only one single
end-effector twist.
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7.8.1 The Jacobian matrix

The relation between joint positions q and end-effector pose TT is nonlinear, but the relationship between the
joint velocities q̇ and the end-effector twist tee is linear : if one drives a joint twice as fast, the end-effector will
move twice as fast too. (This linearity property corresponds to the fact that the tangent space se(3) is a vector
space.) Hence, the linear relationship is represented by a matrix :

bst
ee

6×1
= bsJ(q)

6×n
q̇.

n×1
(7.15)

The matrix bsJ(q) is called the Jacobian matrix, or Jacobian for short, with respect to the reference frame
{bs}. It was introduced by Withney, [74] (see [54] for an earlier similar coordinate description that doesn’t use
the name “Jacobian”). The terminology is in accordance with the “Jacobian matrix” as defined in classical
mathematical analysis, (i.e., the matrix of partial derivatives of a function, [8, 11, 43, 60, 66]) named after the
Prussian mathematician Karl Gustav Jacob Jacobi (1804–1851). Note that the matrix of the linear mapping
depends itself nonlinearly on the joint positions q. One most often omits the explicit mention of J ’s dependence
on the joint positions q. Note that the mapping from joint velocities to end-effector motion is unique, but that
different Jacobian matrices (i.e., coordinate representations) exist, depending on (i) whether the twist on the
left-hand side of Eq. (7.15) is a screw twist, a pose twist or a body-fixed twist (Sect. 6.5), and (ii) the reference
frame {bs} with respect to which the end-effector twist tee is expressed.

Fact-to-Remember 50 (Physical interpretation of Jacobian matrix)
The ith column of the Jacobian matrix is the end-effector twist generated by a unit velocity
applied at the ith joint, and zero velocities at the other joints.
The Jacobian matrix is a basis for the vector space of all possible end-effector twists; hence,
each column of the Jacobian is sometimes called a partial twist, [45].

The twist interpretation of the Jacobian implies that the joint rates q̇ are dimensionless coordinates.

Analytical Jacobian J in Eq. (7.15) is not a real mathematical Jacobian, since the angular velocity three-
vector ω is not the time derivative of any three-vector orientation representation, Sect. 5.3.6. Nevertheless, the
time derivative of a forward position kinematic function td = f(q) is well-defined:

dtd

dt
=

n∑

i=1

∂f(q)

∂qi

∂qi

∂t
, J̄ q̇. (7.16)

The angular coordinates of the finite displacement twist td are a set of three Euler angles. Chapter 5 has shown
that the time derivatives of these Euler angles are related to the angular velocity three-vector by means of
integrating factors. Hence, the difference between the Jacobian in Eq. (7.15) and the matrix of partial derivatives
J̄ = ∂f(q)/∂qi in Eq. (7.16) are these integrating factors. J̄ in Eq. (7.16) is sometimes called the analytical
Jacobian, [23, 62, 32], when it is necessary to distinguish it from the twist Jacobian J in Eq. (7.15).

7.8.2 General FVK: velocity recursion

The previous Section defines the Jacobian matrix; this Section explains how to calculate it, starting from known
joint positions and velocities. The following procedure works for any serial structure with an arbitrary number of
n joints [51]. The basic idea is to perform an outward recursion (or “sweep”): one starts with the twist generated
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by the joint closest to the base, then transforms this twist to the second joint, adds the twist generated by this
joint, transforms it to the third joint, etc.

Numerical FVK

Step 0 Initialization. The twist of the “zeroth” joint in the base reference frame {0} is always zero:

i = 0, and 0t
0 =

(
0
0

)
. (7.17)

Step 1 Recursion i → i + 1, until i = n:

Step 1.1 Transformation of the twist it
i to the next joint:

i+1t
i = i

i+1S it
i, (7.18)

where the screw transformation matrix i
i+1S is constructed from the (known) link transform

i
i+1T as described in Eq. (6.25).

Step 1.2 Add contribution of joint i + 1:

i+1t
i+1 = i+1t

i + i+1J i+1 q̇i+1. (7.19)

The Jacobian column i+1J i+1 equals (0 0 1 0 0 0)T for a revolute joint, and (0 0 0 0 0 1)T for
a prismatic joint, since the local Z-axis is defined to lie along the joint axis.

The result of the recursion is n+1t
n+1 = eet

ee, the total end-effector twist expressed in the end-
effector frame {ee}.

Step 2 Transformation to the world frame {w} gives:

wt
ee = ee

wS eet
ee. (7.20)

The recursive procedure above also finds the Jacobian matrix: the second term in each recursion through Step 1.2
yields, for q̇i+1 = 1, a new column of the Jacobian matrix, expressed in the local joint reference frame. Applying
all subsequent frame transformations to this new Jacobian column results in its representation with respect to
the world reference frame:

wJ i = w
1 S 1

0S
2
1S . . . i

i−1S iJ i.

Variations on this FVK algorithm have appeared in the literature, differing only in implementation details to
make the execution of the algorithm more efficient.

7.8.3 Closed-form FVK for 321 structure

For the 321 kinematic structure, more efficient closed-form solutions exist, [21, 40, 57, 58, 69] and [29]. The
approach of the last reference is especially instructive, since it maximally exploits geometric insight. The wrist
centre frame {4} of the 321 kinematic structure is the best choice as world frame, because it allows to solve
the FVK by inspection, as the next paragraphs will show. (The Jacobian expressed in the wrist centre frame is
sometimes called the “midframe” Jacobian, [17].)

Closed-form FVK
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Step 1 The wrist is of the ZXZ type (Sect. 5.2.8). The angular velocity generated by the fourth
joint lies along the Z4-axis. The angular velocity generated by the fifth joint lies along the X5-
axis, that is found by rotating the X4-axis about Z4 over an angle q4. And the angular velocity
generated by the sixth joint lies along the Z6-axis, whose orientation with respect to {4} is found
in the last column of Eq. (7.6). In total, this yields

4J456 =
(
4J4 4J5 4J6

)
=




0 c4 −s5s4

0 s4 s5c4

1 0 c5

0 0 0
0 0 0
0 0 0




. (7.21)

Step 2 The twists generated by joints 1, 2 and 3 are pure rotations too, but they cause translational
velocities at the wrist centre point due to the non-zero lever arms between the joints and the wrist
centre point. These moments arms are 4p

i,4, for i = 1, 2, 3, i.e., the position vectors from the three
joints to the wrist centre point. Hence, inspection of Figure 7.10 yields

4J123 =
(
4J1 4J2 4J3

)
=




0 1 1
−s23 0 0
c23 0 0
−dh 0 0
0 l2c3 + l3 l3
0 l2s3 0




. (7.22)

Step 3 In order to obtain twists with the base frame as origin, it suffices to pre-multiply 4J =(
4J123 4J456

)
by the screw transformation matrix 4

bsS:

bsJ = 4
bsS 4J . (7.23)

4
bsS is straightforwardly derived from the solution to the forward position kinematics of the robot
(Sect. 7.6.2).

The motivation for choosing the wrist centre frame as reference frame is illustrated by the fact that the Jacobian
expressed in this frame has a zero 3 × 3 submatrix.

Later Sections will need the value of the determinant of the Jacobian matrix. Also here, the advantage of the
midframe Jacobian 4J appears: it has a zero 3× 3 submatrix, which enormously simplifies the calculation of the
determinant:

det(4J) = det



−dh 0 0
0 l2c3 + l3 l3
0 l2s3 0


 det




0 c4 −s5s4

0 s4 s5c4

1 0 c5




= −dhl2l3s3s5. (7.24)

Note that the determinant of the Jacobian is independent of the reference frame with respect to which it is
calculated:

fJ = i
fS iJ ⇒ det(fJ) = det( i

fS) det(iJ), (7.25)

and det(S) = det2(R) = 1 (Sect. 6.6.3).
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7.9 Inverse position kinematics

The inverse position kinematics (“IPK”) solves the following problem: Given the actual end-effector pose ee
bsT ,

what are the corresponding joint positions q = (q1 . . . qn)T ? In contrast to the forward problem, the solution
of the inverse problem is not always unique: the same end-effector pose can be reached in several configurations,
corresponding to distinct joint position vectors. A 6R manipulator (a serial chain with six revolute joints, as
in Figs 7.1, 7.2, and 7.3), with a completely general geometric structure has sixteen different inverse kinematics
solutions, [36, 55], found as the solutions of a sixteenth order polynomial.

As for the forward position and velocity kinematics, this Section presents both a numerical procedure for
general serial structures, and the dedicated closed-form solution for robots of the 321 type, as described in [21].
Some older references describe similar solution approaches but in less detail, [28, 54, 59].

The IK of a serial arm are more complex than its FK. However, many industrial applications don’t need
IK algorithms, since the desired positions and orientations of their end-effectors are manually taught : a human
operator steers the robot to its desired pose, by means of control signals to each individual actuator; the operator
stores the sequence of corresponding joint positions into the robot’s memory; during subsequent task execution,
the robot controller moves the robot to this set of taught joint coordinates. Note that the current trends towards
off-line programming does require IK algorithms. And hence calibrated robots. Recall that such calibrated robots
have a general kinematic structure.

7.9.1 General IPK: Newton-Raphson iteration

Inverse position kinematics for serial robot arms with a completely general kinematic structure (but with six
joints) are solved by iterative procedures, based on the Newton-Raphson approach, [54, 66]:

Numerical IPK

Step 1 Start with an estimate q̂ = (q̂1 . . . q̂6)
T of the vector of six joint positions. This estimate is,

for example, the solution corresponding to a previous nearby pose, or, for calibrated robots, the
solution calculated by the nominal model (using the procedure of the next Section if this nominal
model has a 321 structure). As with all iterative algorithms, the better the initial guess, the faster
the convergence.

Step 2 Denote the end-effector pose that corresponds to this estimated vector of joint positions by
T (q̂). The difference between the desired end-effector pose T (q) (with q the real joint positions
which have to be found) and the estimated pose is “infinitesimal,” as assumed in any iterative
procedure:

T (q) = T (q̂) T∆(∆q). (7.26)

∆q , q− q̂ is the joint position increment to be solved by the iteration. Solving for T∆(∆q) yields

T∆(∆q) = T−1(q̂)T (q). (7.27)

Step 3 Equation (6.18) gives the form of the infinitesimal pose T∆(∆q):

T∆ =




1 −δz δy dx

δz 1 −δx dy

−δy δx 1 dz

0 0 0 1


 . (7.28)
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The infinitesimal displacement twist t∆(q̂) = (δx δy δz dx dy dz)
T corresponding to T∆(∆q) is easily

identified from Eq. (7.28). On the other hand, it depends linearly on the joint increment ∆q

through the Jacobian matrix J(q̂), Eq. (7.15):

t∆(q̂) = J(q̂)∆q + O(∆q2). (7.29)

J(q̂) is calculated by the numerical FVK algorithm in Sect. 7.8.2.

Step 4 Hence, the joint increment ∆q is approximated by

∆q = J−1(q̂) t∆(q̂). (7.30)

The inverse of the Jacobian matrix exists only when the robot arm has six independent joints.
Section 7.14 explains how to cope with the case of more or less than six joints.

Step 5 If ∆q is “small enough,” the iteration stops, otherwise Steps 2–4 are repeated with the new
estimate q̂i+1 = q̂i + ∆q.

This procedure gives an idea of the approach, but real implementations must take care of several numerical details,
such as, for example:

1. Inverting a 6 × 6 Jacobian matrix (which is required in motion control) is not an insurmountable task for
modern microprocessors (even if the motion controller runs at a frequency of 1000Hz or more), but nevertheless
the implementation should be done very carefully, in order not to loose numerical accuracy.

2. In order to solve a set of linear equations Ax = b, it is, from a numerical point of view, not a good idea to first
calculate the inverse A−1 of the matrix A explicitly, and then to solve the equation by multiplying the vector
b by this inverse, as might be suggested by Eq. (7.30). Numerically more efficient and stable algorithms exist,
[22, 66], the simplest being the Gaussian elimination technique and its extensions.

3. The numerical procedure finds only one solution, i.e., the one to which the iteration converges. Some more elab-
orate numerical techniques exist to find all solutions, such as for example the continuation, dialytic elimination
and homotopy methods, [56, 67, 70].

7.9.2 Closed-form IPK for 321 structure

The efficient closed-form IPK solution for the 321 structure relies again on the decoupling at the wrist centre
point, [21]:

Closed-form IPK

Step 1 The position of the wrist centre point is simply given by the inverse of Eq. (7.12):

bsp
wr = bsp

ee − ee
bsR (0 0 l6)

T . (7.31)

Step 2 Hence, the first joint angle is

q1 = atan2(bsp
wr
x ,±bsp

wr
y ). (7.32)

The robot configuration corresponding to a positive bsp
wr
y is called the “forward” solution, since the

wrist centre point is then in front of the “body” of the robot; if bsp
wr
y is negative, the configuration

is called “backward.”
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forward
elbow up

forward
elbow down

backward
elbow down

backward
elbow up

Figure 7.11: Four of the eight configurations corresponding to the same end effector pose, for a 321 type of
manipulator. The four other configurations are similar to these four, except for a change in the wrist configuration
from “flip” to “no flip.”

Step 3 The horizontal and vertical distances dh and dv of the wrist centre point with respect to the
shoulder frame {1} are found by inspection of Fig. 7.10:

dh =
√

(bsp
wr
x

)2 + (bsp
wr
y

)2, dv = bsp
wr
z − l1. (7.33)

Step 4 Now, look at the planar triangles formed by the second and third links (Fig. 7.10).

Step 4.1 The cosine rule gives

q3 = ± arccos

(
(dh)2 + (dv)2 − (l2)

2 − (l3)
2

2l2l3

)
. (7.34)

A positive q3 gives the “elbow up” configuration (Fig. 7.11); the configuration with negative q3

is called “elbow down.”

Step 4.2 The tangent rules yield

q2 = atan2
(
dh, dv

)
− α, (7.35)

with

α = atan2 (l3s3, l2 + l3c3) . (7.36)

Step 5 The inverse position for the ZXZ wrist has already been described in Section 5.3.2. It needs
6
4R as input, which is straightforwardly derived from 7

bsR (a known input parameter) and 4
bsR

(which is known if the first three joint angles are known):

6
4R = 7

4R = bs
4R

7
bsR, (7.37)

with

4
bsR = R(Z, q1)R(X,−q2 − q3). (7.38)

As mentioned in Section 5.2.8, two solutions exist: one with q5 > 0 (called the “no-flip” configu-
ration) and one with q5 < 0 (called the “flip” configuration).
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In the algorithm above, a “configuration” (Sect. 7.3) corresponds to a particular choice of IPK solution. In total,
the 321 manipulator has eight different configurations, by combining the binary decisions “forward/backward,”
“elbow up/elbow down,” and “flip/no flip.” Note that these names are not standardised: the robotics literature
contains many alternatives.

7.10 Inverse velocity kinematics

Assuming that the inverse position kinematics problem has been solved for the current end-effector pose ee
bsT ,

the inverse velocity kinematics (“IVK”) then solves the following problem: Given the end-effector twist tee, what
is the corresponding vector of joint velocities q̇ = (q̇1 . . . q̇n)T ? A very common alternative name for the IVK
algorithm is “resolved rate” procedure, especially in the context of robot control, [73].

As in the previous Sections, a numerical procedure for general serial structures is given, as well as a dedicated
closed-form solution for robots of the 321 type. Note that the problem is only well-defined if the robot has six
joints: if n < 6 not all end-effector twists can be generated by the robot; if n > 6 all end-effector twists can be
generated in infinitely many ways.

7.10.1 General IVK: numerical inverse Jacobian

As for the inverse position kinematics, the inverse velocity kinematics for general kinematic structures must be
solved in a numerical way. The simplest procedure corresponds to one iteration step of the numerical procedure
used for the inverse position kinematics problem:

Numerical IVK

Step 1 Calculate the Jacobian matrix J(q).

Step 2 Calculate its inverse J−1(q) numerically.

Step 3 The joint velocities q̇ corresponding to the end-effector twist tee are:

q̇ = J−1(q) t
ee. (7.39)

Note that, as mentioned before, better and more efficient algorithms calculate q̇ without the explicit calculation
of the matrix inverse J−1.

7.10.2 Closed-form IVK for 321 structure

The symbolically derived Jacobian for the 321 kinematic structure (Sect. 7.8.3) turns out to be easily invertible
symbolically too when expressed in the wrist centre frame, [29, 57, 58]:

Step 1 The Jacobian 4J (Eqs (7.21) and (7.22)) has a zero 3×3 block in the lower right-hand side:

4J =

(
A B

C 0 3

)
. (7.40)

Step 2 It is then easily checked by straightforward calculation that

4J
−1 =

(
0 3 C−1

B−1 −B−1AC−1

)
. (7.41)
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Step 3 The inverses B−1 and C−1 are found symbolically by dividing the transpose of their matrices
of cofactors by their determinants. These determinants are readily obtained from Eqs (7.21)–
(7.22):

det(B) = s5, det(C) = l2l3d
hs3. (7.42)

Hence,

B−1 =
1

s5




s4c5 s5c4 −s4

−c5c4 s5s4 c4

s5 0 0




, C−1 =




− 1

dh
0 0

0 0
1

l2s3

0 − 1

l3
− l2c3 + l3

l2l3s3




. (7.43)

Step 4 In order to find the joint velocities, one has to post-multiply 4J
−1 by bs

4S:

q̇ = 4J
−1 bs

4S bst = bsJ
−1

bst. (7.44)

7.11 Inverse force kinematics

Assuming that the inverse position kinematics problem has been solved for the current end-effector pose ee
bsT ,

the inverse force kinematics (“IFK”) then solves the following problem: Given the wrench wee that acts on the
end-effector, what is the corresponding vector of joint forces/torques τ = (τ1 . . . τn)T ? This Section presents
two equivalent approaches.

Projection on joint axes. The end-effector twist tee is the sum of the twists generated by all joints individually;
but a wrench w exerted on the end-effector is transmitted unchanged to each joint in the serial chain. Part of
the transmitted wrench is to be taken up actively by the joint actuator, the rest is taken up passively by the
mechanical structure of the joint. While the wrench is physically the same screw at each joint, its coordinates
expressed in the local joint frames differ from frame to frame. The wrench coordinates bsw of the end-effector
wrench expressed in the base reference frame {bs} are related to the coordinates iw of the wrench expressed in
the reference frame of the ith joint through the screw transformation matrix bs

iS, Eq. (6.25):

iw = bs
iS bsw. (7.45)

If this local frame {i} has its Zi axis along the prismatic or revolute joint axis, then the force component τi felt
by the joint actuator corresponds to, respectively, the third and sixth coordinate of iw. These coordinates are
found by premultiplying bsw by the third or sixth rows of bs

iS, or equivalently, the third and sixth columns of
bs
iS

T . Equations (6.26)–(6.27) learn that these are given by

bs
iS3× = bs

iS
T
×3 =

(
bse

i
z

0

)
, and bs

iS6× = bs
iS

T
×6 =

(
bsp

bs,i × bse
i
z

bse
i
z

)
, (7.46)

where S3× indicates the third row of matrix S, and S×6 the sixth column. These columns resemble the columns
J i of the Jacobian matrix as used for screw twists, but with the first and second three-vectors interchanged. So,
premultiplication of J i by ∆̃, Eq. (4.18), makes the resemblance exact. The above reasoning can be repeated for
all joints, and for all other twist and wrench representations. Hence, the IFK is

τ = (∆̃J)T
w. (7.47)
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Conservation of virtual work. A second approach to derive this IFK is through the instantaneous power
generated by an end-effector twist t against the wrench w exerted on the end-effector. This power equals tT ∆̃w

in Cartesian space coordinates (Sect. 4.5.4), and
∑n

i=1 τiq̇i in joint space coordinates. Replacing t by Jq̇ and
some simple algebraic manipulations yield Eq. (7.47) again. In the robotics literature you see this relationship
most often in the form τ = JT

w, due to the difference in twist representation from the one used in this text
(Sect. 6.5.1): J literature = ∆̃J this text.

Fact-to-Remember 51 (“Jacobian transpose”)
Equation (7.47) is often referred to as the “Jacobian transpose” relationship between end-
effector wrench w and joint force/torque vector τ . It represents the fact that the joint
torque that keeps a static wrench exerted on the end-effector in equilibrium is given by the
projection of this end-effector wrench on the joint axis. This fact is valid for any serial
robot arm.

Strictly speaking, ∆̃J is not a “Jacobian matrix,” since wrenches are not the partial derivatives of anything.

7.12 Forward force kinematics

The forward force kinematics (“FFK”) solves the following problem: Given the vectors of joint force/torques
τ = (τ1 . . . τn)T , what is the resulting static wrench wee that the end-effector exerts on the environment? (If the
end-effector is rigidly fixed to a rigid environment!) This problem is only well-defined if the robot has six joints:
if n < 6 the robot cannot generate a full six-dimensional space of end-effector wrenches; if n > 6 all wrenches can
be generated in infinitely many ways.

7.12.1 Dual wrench

For a robot with six joints, the Jacobian matrix is a basis for the twist space (“tangent space”) of the end-effector
(Sect. 7.8.1). Section 3.9 introduced the concept of a dual basis of the wrench space (“co-tangent space”), when
a basis for the twist space is given. The kinematic structure of the robot is a de facto choice of twist space basis.
The natural pairing (“reciprocity”) between twists and wrenches leads to a de facto dual basis in the wrench
space:

Fact-to-Remember 52 (Physical interpretation of dual wrench basis)
The ith column of the “dual” wrench basis of a serial robot arm is the wrench on the end-
effector that generates a unit force/torque at the ith joint, and zero forces/torques at the
other joints.
Each column of the dual wrench basis is sometimes called a partial wrench, [45].

This text uses the notation G = (G1 . . . G6) for the matrix of the six dual basis wrenches Gi. Its definition
yields the following relationship with the Jacobian matrix J of the same robot arm:

J ∆̃ G = 16×6. (7.48)
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7.12.2 General FFK: dual wrenches

G is a basis for the wrench space, hence each wrench w on the end-effector has coordinates τ = (τ1, . . . , τ6):

w = G τ . (7.49)

τi is the force/torque required at the ith joint to keep the end-effector wrench w in static equilibrium (neglecting
gravity of the links!). The relation with the “Jacobian transpose” formula for the Inverse Force Kinematics,
Eq. (7.47) is also immediately clear:

G = (∆̃J)−T . (7.50)

7.12.3 Closed-form FFK for 321 structure

As before, using the wrist centre point of the 321 kinematic structure allows for a solution of the FFK problem
by simple inspection, since the partial wrench of each joint is easily found from Fig. 7.10 in Sect. 7.6.2:

Joint 1 The partial wrench is a pure force through the wrist centre point and parallel to the axes of the second
and third joints.

Joint 2 The partial wrench is a pure force through the wrist centre point and through the joint axis of the first
and third joints.

Joint 3 The partial wrench is a pure force through the wrist centre point and through the joint axis of the first
and second joints.

Joints 4,5,6 The partial wrench of each of these joints is the combination of:

1. A pure moment about a line through the wrist centre point and orthogonal to the axes of the two other wrist
joints. This moment has no components about these other two joint axes. However, it can have components
about the first three joint axes.

2. These components about the first three joint axes are compensated by pure forces that do not generate
moments about these first three joint axes. These forces are: (i) through the origins of the second and third
joint frames (i.e., along l2), and (ii) through the first joint axis and parallel with the second and third joint
axes.

7.13 Singularities

The inverse velocity kinematics exhibit singularities:

Fact-to-Remember 53 (Singularity: physical interpretation)
At a singularity, the Jacobian matrix J looses rank.

This means that the end-effector looses one or more degrees of twist freedom (i.e., instantaneously, the end-
effector cannot move in these directions). Equivalently, the space of wrenches on the end-effector that are taken
up passively by the mechanical structure of the robot (i.e., without needing any joint torques to be kept in static
equilibrium) increases its dimension.
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Serial robots with less than six independent joints are always “singular” in the sense that they can never span
a six-dimensional twist space. This is often called an “architectural singularity” [41].

A singularity is usually not an isolated point in the workspace of the robot, but a sub-manifold.
As for the inverse position kinematics, the general approach to find the singularities of a serial manipulator is

numerical. For 321 robots, however, a closed-form solution follows straightforwardly from the closed-form velocity
kinematics. The following Sections give the details.

7.13.1 Numerical singularity detection

For a square Jacobian, det(J) = 0 is a necessary and sufficient condition for a singularity to appear. However,
some robots do not have square Jacobians. Hence, a better numerical criterion is required. The most popular
criterion is based on the Singular Value Decomposition (SVD), [22, 42, 66], that works for all possible kinematic
structures: every matrix A (with arbitrary dimensions m × n) has an SVD decomposition of the form

A
m×n

= U
m×m

Σ
m×n

V T

n×n
, with Σ =




σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
...

...
. . . 0 0 . . . 0

0 0 . . . σm 0 . . . 0


 , (7.51)

represented here for n > m. U and V are orthogonal matrices, and the singular values σi are in descending order:
σ1 > σ2 > · · · > σm > 0. A has full rank (i.e., rank(A) = m in the case above where n > m) if σm 6= 0; it loses
rank if σm ≈ 0, i.e., σm is zero within a numerical tolerance factor. Hence, the most popular way to monitor a
robot’s “closeness” to singularity is to check the smallest singular value in the SVD of its Jacobian matrix. Note
that this requires quite some computational overhead, and that better methods exist for closed-form kinematics
designs, such as the 321 structure.

7.13.2 Singularity detection for 321 structure

The singular positions of the 321 robot structure, Fig. 7.9, follow immediately from the closed-form inverse velocity
kinematics: the determinant of the Jacobian is −dhl2l3s3s5, Eq. (7.24). Hence, it vanishes in the following three
cases (Fig. 7.12):

Arm-extended singularity (q3 = 0) ([38] calls it a “regional” singularity.) The robot reaches the end of its
regional workspace, i.e., the positions that the wrist centre point can reach by moving the first three joints.
The screw reciprocal to the remaining five motion degrees of freedom is a force along the arm.

Wrist-extended singularity (q5 = 0) ([38] calls it a “boundary” singularity.) The first and last joint of the
wrist are aligned, so they span the same motion freedom. Hence, the angular velocity about the common
normal of the three wrist joints is lost. The screw reciprocal to the remaining five motion degrees of freedom
cannot be described in general: it depends not only on the wrist joints, but on the first three joint angles too,
[38].

Wrist-above-shoulder singularity (dh = 0) ([38] calls it an “orientation” singularity.) The first joint axis
intersects the wrist centre point. This means that the three wrist joints (which are equivalent to a spherical
joint) and the first joint are not independent. The screw reciprocal to the five remaining motion degrees of
freedom is a force through the wrist centre point, and orthogonal to the plane formed by the first three links.
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Figure 7.12: The three singular positions for the 6R wrist-partitioned serial robot arm with closed form kinematic
solutions: “arm-extended,” “wrist-extended” and “wrist-above-shoulder.”

Fact-to-Remember 54 (Singularity and configuration)
Contrary to what might be suggested by the previous paragraphs, it is not necessary that
a robot passes through a singularity in order to change configuration, [20, 30, 72]. Only
special structures, such as the 321 robots, have their singularities coinciding with their
configuration borders.

Look at the Jacobian matrix for a 321 design, Eq. (7.40). The zero block in this Jacobian comes from the fact
that the wrist is spherical, i.e., it generates no translational components when expressed in the wrist centre frame.
A spherical wrist does not only decouple the position and orientation kinematics, but also the singularities:

Fact-to-Remember 55 (Singularity decoupling)
A spherical wrist decouples the singularities of the wrist, det(B) = 0, and the singularities
of the regional structure of the arm, det(C) = 0, [75].

A general kinematic structure has more complicated and less intuitive singularities. The reason why shoulder
offsets (Sect.7.6, Fig. 7.2) have been introduced as extensions to the 321 kinematic structure is that they make
sure that the robot cannot reach “wrist-above-shoulder” singular position. The reason behind elbow offsets is to
avoid the “arm-extended” singularity in the “zero position” of the robot; zero positions (of part of the arm) are
often used as reference positions at start-up of the robot, and it is obviously not a good idea to let the robot start
in a singularity.
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Figure 7.13: Redundant wrist with four revolute joints. In the left-most configuration, two axes line up, but the
wrist does not become singular.

7.14 Redundancies

Definition 2 (Redundant robot arm) A manipulator with n joints is called redundant if it is used to perform
a task that requires less than the available n degrees of freedom.

For example, a classical six degrees of freedom serial robot is redundant if it has to follow the surface of a
workpiece with a vertex-like tool (Fig. 7.15) and no orientation constraints are specified: only three joints are
required to keep the tool vertex on the surface, and only five are needed to keep the tool aligned with, for
example, the normal direction to the surface. In general, however, robots are designed for more than just one
single task, and hence we speak of redundant robots when they have seven or more joints. An obvious choice
for an anthropomorphic redundant robot is the “7R” manipulator, Fig. 7.14. It has an extra joint between the
“shoulder” and the “elbow” of the 6R wrist-partitioned manipulators in Figures 7.1 and 7.2. In this way, the
robot can reach “around” obstacles that the 6R robots cannot avoid. Such a redundant manipulator can attain
any given pose in its dextrous workspace in infinitely many ways. This is obvious from the following argument:
if one fixes one particular joint to an arbitrary joint value, a full six degrees of freedom robot still remains, and
this robot can reach the given pose in at least one way. This 7R manipulator can also avoid the “extended-wrist”
and “wrist-above-shoulder” singularities (but not necessarily both at the same time).

7.14.1 Forward kinematics

The forward kinematics (both position and velocity) give no special difficulties: any given set of joint positions
and joint velocities still corresponds to one unique end-effector pose and twist, and the forward velocity kinematics
are still described by the Jacobian matrix:

t
ee

6×1
= J(q)

6×7
q̇.

7×1
(7.52)

This Jacobian matrix has more columns than rows, e.g., it is a 6 × 7 matrix in the case of the 7R robot. Hence,
it always has a null space, i.e., a set of joint velocities that do not move the end-effector:

Null (J(q)) =
{
q̇N | J(q) q̇N = 0

}
. (7.53)

This null space depends on the current joint positions. Equation (7.53) implies that an arbitrary vector of the
null space of the Jacobian can be used as an internal motion of the robot:

t
ee = J(q) q̇ = J(q)

(
q̇ + q̇N

)
. (7.54)
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Figure 7.14: Redundant serial arm with seven revolute
joints. It differs from the 321 structure in having an
extra shoulder joint.

Figure 7.15: Vertex-face contact.

7.14.2 Inverse kinematics

The inverse kinematics of a redundant robot require the user to specify a criterion with which to solve the
ambiguities in the joint positions and velocities (internal motions) corresponding to the specified end-effector
pose and twist. Some examples of redundancy resolution criterions are:

1. Keep the joints as close as possible to a specified position. The goal of this criterion is to avoid that joints reach
their mechanical limits. A simple approach to reach this goal is to attach virtual springs to the joints, with the
equilibrium position of the springs near the middle of the motion range of the joints. With this spring model,
the redundancy resolution criterion corresponds to the minimization of the potential energy in the springs.

2. Minimize the kinetic energy of the manipulator, [31].

3. Maximize the manipulability of the manipulator, i.e., keep the robot close to the joint positions that give it the
best ability to move and/or exert forces in all directions, [19, 34, 48, 53].

4. Minimize the joint torques required for the motion. The goal of this criterion is to avoid saturation of the
actuators, and to execute the task with minimum “effort,” [16, 27].

5. Execute a high priority task but use the redundancy to achieve a lower priority task in parallel, [49].

6. Avoid obstacles in the robot’s workspace. For example, a robot with an extra shoulder or elbow joint can reach
“around” obstacles, [2, 26].

7. Avoid singularities in the robot kinematics, [1, 4, 37, 50, 63]. For example, the 4R “Hamilton wrist,” [39],
(Fig. 7.13) avoids the “extended-wrist” singularity.

8. Travel through singularities while keeping the joint velocities bounded, [7, 33].

Many of these redundancy resolution criterions (implicitly or explicitly) rely on the concept of the extended
Jacobian, [1]. This approach starts from the observation that the 6×n Jacobian can be made into a n×n matrix
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by adding n − 6 rows to it, collected here in a (n − 6) × n matrix A:

J̄ =




J(q)

A(q)


 . (7.55)

This is equivalent to adding n − 6 linear constraints on the joint velocities:

A(q)q̇ = 0. (7.56)

In order to obtain a full-rank extended Jacobian J̄ , the constraint matrix A must be full rank, and transversal
(or “transient”) to the Jacobian J , i.e., the null spaces of A and J should have no elements in common, [64].
Equation (7.55) then has a uniquely defined inverse:

J̄−1 ,
(
B

∣∣ ∗
)
. (7.57)

The n × 6 matrix B is a so-called generalized inverse, or pseudo-inverse, often denoted by B = J†, [5, 9, 44]:
it satisfies JB = 16×6 and BJ = 1n×n. (This follows straightforwardly from the definition of J̄ .) With it, the
forward velocity kinematics, Eq. (7.52), can be “inverted”:

q̇ = B t
ee. (7.58)

Do not forget that the resulting joint velocities depend on the choice of the constraint matrix A. The following
paragraphs derive this general result of Eq. (7.58) in more detail and in an alternative way for the particular
example of the kinetic energy minimization criterion. As will be described in Chapter 10, the kinetic energy T of
a serial manipulator is of the form

T =
1

2
q̇T M(q) q̇. (7.59)

Since T is a positive scalar (and hence TT = T ), the inertia matrix M is both invertible and symmetric.
Minimizing the kinetic energy, while at the same time obeying the inverse kinematics requirement that tee = J q̇,
transforms the solution to the following constrained optimization problem:





min
q̇

T =
1

2
q̇T M(q) q̇,

such that t
ee = J(q) q̇.

(7.60)

The classical solution of this kind of problem uses Lagrange multipliers, [12, 66], i.e., the constraint in (7.60) is
integrated into the functional T to be minimized as follows:

min
q̇

T ′ =
1

2
q̇T M q̇ + λT (tee − J q̇) . (7.61)

(For notational simplicity, we dropped the dependence of M and J on the joint positions q.) λ is the column
vector of the (currently unknown) Lagrange multipliers. They can be physically interpreted as the impulses
(forces times mass) generated by violating the constraint tee−J q̇ = 0. (Check the physical units!) The Lagrange
multipliers are determined together with the desired joint velocities by setting to zero the partial derivatives of
the functional T ′ with respect to the minimization parameter vector q̇:

q̇
1×7

T M
7×7

− λT

1×6
J

6×7
= 0 1×7. (7.62)
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This gives a set of seven equations, in the seven joint velocities and the six Lagrange multipliers. These Lagrange
multipliers can be solved for by post-multiplying Eq. (7.62) by M−1JT :

q̇T JT = λT
(
J M−1JT

)
. (7.63)

The left-hand side of this equation equals the transpose of the end effector twist, (tee)T , and the matrix triplet on
the right-hand side is a square 6 × 6 matrix that can be inverted (at least if the manipulator is not in a singular
configuration, Sect. 7.13). Hence,

λT = (tee)T
(
J M−1JT

)−1

. (7.64)

Equations (7.62) and (7.64), and the fact that M is symmetric, yield

q̇ = M−1JT
(
J M−1JT

)−1

t
ee (7.65)

, J
†

M−1t
ee. (7.66)

J
†

M−1 is a n× 6(n > 6) matrix, the so-called weighted pseudo-inverse of J , with M−1 acting as weighting matrix
on the space of joint velocities, [5, 9, 44]. It is not a good idea to calculate the solution q̇ by the straightforward
matrix multiplications of Eq. (7.65); better numerical techniques exist, see e.g. [22].

Fact-to-Remember 56 (Redundancy resolution)
The redundancy resolution approaches based on an extended Jacobian yield only local op-
timality. For example, one minimizes the instantaneous kinetic energy, not the kinetic
energy over a complete motion. The success of the extended Jacobian approach is due to
the fact that analytical solutions exist for quadratic cost functions only.

Cyclicity—Holonomic constraints. When one steers the end-effector of a redundant robot along a cyclic
motion (i.e., it travels through the some trajectory of end-effector poses repetitively), the pseudo-inverse derived
from an extended Jacobian typically results in different joint trajectories during each cycle, [3, 10, 14, 47, 64].
Whether or not the joint space trajectory is cyclic depends on the integrability of the constraint equation (7.56).
If this equation is integrable, the constraints are called holonomic. This name comes from the Greek word holos,
which means “whole, integer.” A (non)holonomic constraint on the joint velocities can (not) be integrated to give
a constraint on the joint positions. Section 5.3.6 already explained how integrability can be checked.

7.15 Constrained manipulator

The previous Section looked at the case in which one imposes virtual constraints on the manipulator; this Section
explains how to deal with physical constraints: free-space motion with less than six joints, or motion in contact
with a stiff environment and with a six-jointed manipulator. The former gives rise to an optimization problem in
Cartesian space; the latter to an optimization problem in joint space, dual to the redundancy resolution in the
previous Section.
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7.15.1 Free-space motion with less than six degrees of freedom

Assume the manipulator has less than six joints, say 6 − n. Hence, the Jacobian J is a 6 × n matrix, and there
always exists a reciprocal wrench space of at least dimension n. Such a manipulator is constrained to move on a
(6− n)-dimensional sub-manifold of SE(3). That means that it can not generate any arbitrary end-effector twist
tee. A kinematic energy based pseudo-inverse procedure exists to project tee on the span of J . This procedure
is derived quite similarly to the redundancy resolution procedure of the previous Section; nevertheless, it has
fundamentally different properties. The (unconstrained) objective kinetic energy function to be minimized is:

min
q̇

T =
1

2
(tee − Jq̇)T M (tee − Jq̇). (7.67)

M is a (full-rank) Cartesian space mass matrix, Chapt. 10. The physical interpretation of this minimization
problem is that the end-effector twist tee is approximated by that twist Jq̇ on the constrained sub-manifold that
results in the smallest “loss” of kinetic energy compared to the case that the full tee could be executed. Setting
the partial derivative of the objective function with respect to the joint velocities to zero yields:

Mt
ee = MJq̇.

(Recall that M is symmetric, hence MT = M .) Pre-multiplying with M−1 is not allowed, since J is not of full
column rank. However, pre-multiplying with JT gives

JT Mt
ee = (JT MJ)q̇.

The matrix (JT MJ) is square (n×n) and full-rank if the manipulator is not in a singular configuration. Hence,
it is invertible, and

q̇ = (JT MJ)−1JT Mt
ee,

, J
†
M t

ee. (7.68)

J
†
M is also a weighted pseudo-inverse of J , but this time with M as the 6 × 6 weighting matrix on the space of

Cartesian twists. Pre-multiplying Eq. (7.68) with J proves that the executed twist t is a projection of the desired
twist tee:

t = Jq̇ = JJ
†
M t

ee , P t
ee. (7.69)

It is straightforward to check that P indeed satisfies the projection operator property that PP = P . A set of
linear constraints similar to Eq. (7.56) does not exist: all joint velocities are possible.

7.15.2 Motion in contact

Assume the manipulator has six joints, but its end-effector makes contact with a (stiff) environment. This means
that it looses a number of degrees of motion freedom, say n. The Jacobian J is still a 6 × 6 matrix, but an
n-dimensional wrench space exists (with wrench basis G) to which the allowed motions of the end-effector must
be reciprocal. This imposes a set of linear constraints on the joint velocities as in Eq. (7.56):

(GT ∆̃J)q̇ = 0. (7.70)

A possible way to “filter” any possible end-effector twist tee ∈ span(J) into a twist t compatible with the
constraint (i.e., reciprocal to G) follows a procedure similar to the redundancy resolution in Sect. 7.14.2. Indeed,

122



this “kinetostatic filtering” [18] can be formulated as the following constrained optimization problem:





min
t

T =
1

2
(tee − t)T M (tee − t)

such that GT ∆̃t = 0.

(7.71)

The solution of this optimization problem runs along similar lines as the redundancy resolution problems in
Sect. 7.14: (i) include the constraint in the objective function by means of Lagrange multipliers; (ii) set the
partial derivative with respect to t equal to zero; and (iii) solve for the Lagrange multipliers. This leads to the
following weighted projection operation:

t =

(
1 −

(
(∆̃G)T

)†

M−T

(∆̃G)T

)
t
ee. (7.72)

Definition 3 (Workspace constraints) A robot is constrained in its motion at a given configuration if it can-
not generate velocities that span the complete tangent space at that configuration.

We distinguish between

1. Kinematic constraints (also called geometric constraints): the instantaneous velocities that the robot can
execute form (part of) a vector space with dimension lower than six. This space is called the twist space of the
constraint. Equivalently, there exists a non-empty wrench space of generalized forces at the end-effector that
are balanced passively by the mechanical structure of the robot. “Passive” means: without requiring torques
at the driven joints. The twist and wrench spaces are always reciprocal, Sect. 4.5.4. An element of the wrench
space is said to be a reciprocal wrench.

2. Dynamic constraints: the actuators cannot produce sufficient torque to generate any possible velocity, or rather
acceleration. This means that the bandwidth of the robot motion is limited, but not necessarily the spatial
directions in which it can move.

A mechanical limit of a revolute joint is a simple example of a kinematic constraint: when the joint has reached
this mechanical limit, the end-effector can resist any wrench that corresponds to a pure torque about this joint
(and in the direction of the mechanical limit!). Another simple example of a kinematically constrained robot is
a robot with less than six joints, e.g., the SCARA robot of Fig. 7.4. The twist space of this robot is never more
than four-dimensional: it can always resist pure moments about the end-effector’s X and Y axes (if Z is the
direction of the translational and angular motion of the last link).

A kinematic motion constraint is correctly modelled by (i) a basis for the twist space of instantaneous velocities
allowed by the constraint, or (ii) a basis of the wrench space of instantaneous forces the constraint can absorb.
A kinematic constraint is not correctly modelled by a so-called “space of impossible motions” (i.e, motions that
the robot cannot execute) or a “space of non-reciprocal screws” (i.e., wrenches that are not reciprocal to the
constraint twist space): neither of these concepts is well-defined, since (i) the sum of an impossible motion with
any possible motion remains an impossible motion, and (ii) adding any reciprocal screw to a non-reciprocal screw
gives another non-reciprocal screw.

The discussion in this Section assumes that all bodies and all kinematic constraints are infinitely stiff. If this
is not the case, the robot can move against such a compliant environment, and the relationships between the
possible motions and the corresponding forces are determined by the contact impedance.
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Chapter 8

Parallel manipulator kinematics

8.1 Introduction

The previous Chapter discussed the kinematics of serial robot arms, i.e., the base and end-effector are connected
by one single serial chain of actuated joints. This Chapter introduces the kinematics of parallel robot arms, i.e.,
the base and end-effector are connected by multiple serial chains, in which not all joints are actuated. A fully
parallel robot has six serial chains in parallel, and only one joint in each chain is actuated (Fig. 8.1). Of course,
all sorts of combinations of these purely serial and parallel structures are possible, and many exist in practice.

The main reasons for the overwhelming success of the serial robot design (over 99% of installed industrial
robots. . . ) is that (i) it gives a large workspace compared to the space occupied by the robot itself, and (ii)
kinematic designs exist that simplify the mathematics of the robot’s geometry enormously. The main drawback
of a serial design is its low intrinsic rigidity, so that heavy links and joints must be used to obtain a reasonable

passive
spherical
joint

two passive
revolute joints

actuated
prismatic

joint

end-effector

base

passive Hooke
joint

active revolute
joint

passive spherical
joint

end-effector

base

Figure 8.1: Fully parallel robots. Left: General Stewart-Gough platform; the actuated joints are prismatic, the
passive joints are revolute. Right: HEXA platform; all joints are revolute.
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effective rigidity at the end point. These pros and cons are exactly the opposites of those of parallel manipulators.
The fully parallel designs of Fig. 8.1 have all actuators in or near the base, which results in a very low inertia of
the part of the robot that has actually to be moved. Hence, a higher bandwidth can be achieved with the same
actuation power. This is why parallel structures are used for flight simulators.

A parallel structure supports its end-effector in multiple places, which yields a stiffer and hence more accurate
manipulator for the same weight and cost, and which causes the positioning errors generated in each leg to “average
out,” again increasing the accuracy. This would be very advantageous for accurate milling (Fig. 8.2). However,
experiments with real prototypes show that parallel structures currently do not live up to these expectations:
their accuracy and stiffness are about an order of magnitude worse than for classical serial machines. The reasons
are: (i) the compliance of the ball screws in the prismatic joints, (ii) the complexity of the construction with many
passive joints that all have to be manufactured and assembled with strict tolerances, and (iii) the high forces that
some passive joints have to resist.

The main disadvantage of parallel manipulators is their small workspace: legs can collide, and there are many
passive joints in the structure that all introduce joint limit constraints. This is especially the case with the
spherical “ball-in-socket” joints used in most implementations, [37].

Figure 8.2: Milling machine with a parallel manipulator design (Variax, by Gidding & Lewis).

Duality. Parallel and serial robots are dual, not only in the sense that the weak points of serial designs are the
strong points of parallel designs and vice versa, but also from the geometrical and mathematical point of view,
which is based on the dualities between twists and wrenches, Sect. 3.9. This Chapter exploits these dualities by
describing the kinematics of parallel robots by the same geometrical concepts used in the serial manipulator case.

Fact-to-Remember 57 (Basic ideas of this Chapter)
The dualities between serial and parallel manipulators imply that no new concepts or math-
ematics at all have to be introduced in order to understand and describe parallel manip-
ulators. Roughly speaking, one just has to interchange the words “twist” and “wrench,”
“forward” and “inverse,” “straightforward” and “complicated,” “large” and “small,” etc.

Kinematics. The definitions of forward and inverse position and velocity kinematics as defined for serial robots
apply to parallel robots without change. But parallel robots have a large number of passive joints, whose only
function is to allow the required number of degrees of freedom to each leg. Adding a leg between end-effector
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and base adds motion constraints to the end-effector, while in the case of serial robots adding a joint reduces the
motion constraints (or, equivalently, adds a motion degree of freedom). This text discusses six degrees of freedom
robots only, but many designs have less than six, e.g., planar or spherical robots, [3, 12].

8.2 Parallel robot designs

In its most general form, a parallel robot design consists of a number of serial subchains, all connected to the
same rigid end-effector. As in the case of serial robots, simplicity considerations have resulted in the use of only
a limited set of designs.

The first design was completed towards the beginning of the 1950s, by Gough in the United Kingdom, and
implemented and used as a tyre testing machine in 1955, [13]. In fact, it was a huge force sensor, capable of
measuring forces and torques on a wheel in all directions. Some years later, Gough’s compatriot Stewart published
a design for a flight simulator, [35]. In comments to Stewart’s paper, Gough and others described their designs,
such as the tyre testing machine mentioned above. Gough’s design was fully parallel (while Stewart’s was not),
of the type depicted in Fig. 8.1. Nevertheless, the name of Stewart is still connected to the concept of fully
parallel robots. Probably the first application of a parallel kinematic structure as a robotic manipulator was by
McCallion and Pham, [23], towards the end of the 1970s. A decade later, all-revolute joint parallel manipulators
were designed. Figure 8.1 shows the six degrees of freedom HEXA design, [31]. This was the successor of the
three degrees of freedom DELTA robot, [9]. This DELTA design is a special case of the HEXA: the links in each
couple of neighbouring legs in the HEXA design are rigidly coupled. This gives a spatial parallellogram which
makes the end-effector platform move in translation only.

8.2.1 Design characteristics

The examples above illustrate the most common design characteristics of parallel robots:

1. All designs use planar base and end-effector platforms, i.e., the joints connecting the legs to the base all lie in
the same plane, and similarly at the side of the end-effector. There is no physical motivation for this planarity
constraint, i.e., base and end-effector could in principle have any possible shape. But these planarity constraints
reduce the complexity of the mathematical description. This is another example of the fact that each geometric
constraint imposed on the kinematic structure can be used in the kinematic routines to simplify the calculations,
cf. Sect. 7.2.

2. Although any serial kinematic structure could be used as leg structure of a parallel design, only those serial
structures are used for which the inverse kinematics (position and velocity) are very simple.

3. The previous characteristics are the reasons for the abundant use of spherical and universal joints. These
joints not only simplify the kinematics, but they also make sure that the legs in the Stewart-Gough platforms
experience only compressive or tensile loads, but no shear forces or bending and torsion moments. This reduces
the deformation of the platform, even under high loads.

This last fact is easily proven by calculating the partial wrench (Sect.7.12.1) of the actuated prismatic joint in a
leg of a Stewart-Gough design, Fig. 8.1. If the leg has length l the Jacobian of the leg, expressed in a reference
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Figure 8.3: Left: 3-3 “Stewart(-Gough)” design. Right: 3-1-1-1
design.

Figure 8.4: Generic kinematic model for a
parallel manipulator.

frame in the spherical joint, is:

J =




0 l 0 1 0 0
−l 0 0 0 1 0
0 0 1 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0




.

The columns of J corresponds to the joints starting from the base: first the two intersecting revolute joints at
a distance l from the reference frame, then the actuated prismatic joint acting along the Z-axis of this frame,
and finally the three angular degrees of freedom with axes through the origin of the reference frame. The partial
wrench of the third column is easily seen to be G3 = (0 0 1 0 0 0)T , which is a pure force along the prismatic
joint axis.

8.2.2 Nomenclature

One often subdivides the different designs according to the number of coinciding pivot points on the base and
the end-effector. For example, the “Stewart platform” architecture as used in some flight simulators (leftmost
drawing of Fig. 8.3) has pairwise coinciding connections at both the base and the end-effector, and is therefore
called a 3-3 platform, or octahedral platform, [18, 22]. Manipulators with no coinciding connections are called
6-6 designs. The rightmost example in Figure 8.3 has three legs intersecting at the end-effector and is called a
3-1-1-1 design, [19].

8.3 Coordinate conventions and transformations

The link frame conventions and transformations defined for serial kinematic chains (Sect. 7.4) apply without
change to each of the legs in a parallel robot. The only difference with the serial case are the definitions used for
the connection of all legs to the base and the end-effector platforms. Figure 8.4 shows the kinematic model that
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this text will use as a generic example. These platforms are rigid bodies, which are represented by the reference
frames {bs} and {ee}, respectively. {bs} serves as immobile world reference frame. The X and Z axes of {bs}
and {ee} lie in the corresponding platform plane. The actuated joints in all six legs are prismatic. They are
connected to the base and end-effector by a universal joint at the base and a spherical joint at the end-effector.
The axis of the ith prismatic joint is a directed line L(pbs,ibs , li). pbs,ibs is the vector from the origin of {bs} to
the connection point of the ith leg with the base platform. li is a non-unit direction vector of the ith leg, and its
length li equals the current length of the leg. pee,iee is the vector from the origin of {ee} to the connection of the
ith leg with the end-effector platform. Finally, the vector pbs,ee connects the origin of {bs} to the origin of {ee}.
So, for each leg i, the following position closure constraint is always satisfied:

pbs,ibs + li = pbs,ee + pee,iee , ∀i = 1, . . . , 6. (8.1)

In this equation, pbs,ibs and pee,iee are known design constants, i.e., one knows their coordinates with respect to
{bs} and {ee}, respectively. li is time-varying and usually only its magnitude is measurable, not its direction.
pbs,ee changes with the position and orientation of the end-effector platform with respect to the base platform.
The vector q = (q1 . . . q6)

T denotes the joint positions (i.e., leg lengths, or joint angles of actuated revolute joints)
of the parallel manipulator. Note that, in practice, these leg lengths are not necessarily equal to the positions
measured by the linear encoders on the prismatic joints of the manipulator’s legs, but the relationship between
both is just a constant offset.

centre
of

rotation

Figure 8.5: 321 parallel structure. Figure 8.6: The “CMS” spherical joint, [15].
This design allows to connect several links to
functionally concentric spherical joints.

8.4 321 kinematic structure

For serial robots, the 321 kinematic structure, Sect. 7.5, allows closed-form solutions for the inverse position
and velocity kinematics. The parallel structure in Fig. 8.5 is the dual of this serial 321 structure: it has three
intersecting prismatic legs (i.e., the dual of the three intersecting revolute joints of a spherical wrist), two inter-
secting prismatic legs (i.e., the dual of the two parallel (= intersecting at infinity) revolute joints in the regional
structure of the serial 321 structure), and one solitary leg. Hence the name “321,” [27, 28, 15]. Notwithstanding
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its extreme kinematic simplicity, the 321 manipulator is not yet used in real-world applications. The difficulties
in constructing three concentric spherical joints is probably the major reason, with its moderate stiffness (with
respect to the octahedral 3-3 design) an important secondary reason. Figure 8.6 shows a potential solution to the
concentric joint problem, [15], and an alternative design is given in [5].

Fact-to-Remember 58 (Decoupled kinematics structure of parallel robots)
Similarly to the 321 design for serial robots, the 321 design for parallel robots allows for the
decoupling of the position and orientation kinematics. The geometric feature that generates
this decoupling is the tetrahedron formed by the three intersecting legs.

8.5 Inverse position kinematics

The inverse position kinematics problem (“IPK”) can be stated in exactly the same way as for a serial manipulator:
Given the actual end-effector pose ee

bsT , what is the corresponding vector of leg positions q = (q1 . . . qn)T ? The
IPK is a first example of the geometrical duality between serial and parallel manipulators: the inverse position
kinematics for a parallel manipulator (with an arbitrary number of legs) has a unique solution (if each serial leg
has a unique IPK!), and can be calculated straightforwardly; for a serial manipulator, these were properties of
the forward position kinematics. The IPK works as follows:

Inverse position kinematics

Step 1 Equation (8.1) immediately yields the vector li, since all other vectors in the position closure
equation are known when ee

bsT is known. In terms of coordinates with respect to the base reference
frame {bs}, this equation gives

bsli = bsp
bs,ee + bsp

ee,iee − bsp
bs,ibs

= bsp
bs,ee + ee

bsReep
ee,iee − bsp

bs,ibs . (8.2)

bsp
bs,ee and ee

bsR come from the input ee
bsT . eep

ee,iee and bsp
bs,ibs are known constant coordinate

three-vectors, determined by the design of the manipulator.

Step 2 The length li of this vector li is the square root of the Euclidean norm:

li =
√

(li,x)2 + (li,y)2 + (li,z)2. (8.3)

In a Stewart-Gough design, this length immediately gives the desired position qi of the actuated prismatic joint.

IPK of HEXA leg. In a HEXA design, li is the length between the end-points of a two-link manipulator in
which both links are coupled by a two degrees of freedom universal joint, Fig 8.7. The relationship between the
joint angle qi and this length li follows from the following procedure. The joint angle qi moves the end point of
the first link (with length lbi , Fig 8.7) in leg i to the position pi given by

pi = bi + i
bsR R(X, qi)

(
0 0 lbi

)T
. (8.4)

i
bsR is the rotation matrix between the base frame {bs} and a reference frame constructed in the actuated R joint,
with X-axis along the joint axis and with the Z-axis the direction of the first link corresponding to a zero joint
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Figure 8.7: One leg in the HEXA design. The joint angle qi is variable and measured; the lengths lbi and lti of the
“base” and “top” limbs of each leg are constant; the angles of all other joints are variable but not measured. Note
that the joint between lti and lbi is a two degrees of freedom universal joint, so that the link lti does not necessarily
lie in the plane of the figure.

angle qi. This matrix i
bsR is a constant of the mechanical design of the manipulator. R(X, qi) is the rotation

matrix corresponding to a rotation about the X axis over an angle qi (Sect. 5.2.8):

R(X, qi) =




1 0 0
0 cos(qi) − sin(qi)
0 sin(qi) cos(qi)


 . (8.5)

In this equation, the joint angle qi is the only unknown parameter. The positions pi are connected to a top
platform pivot point ti by links of known lengths lti . Hence

||pi − bsti|| = lti , (8.6)

with

bsti = bsp
bs,ee + ee

bsR ti (8.7)

the coordinates of the top platform pivot point ti with respect to the base frame {bs}. Some straightforward
rewriting of Eq. (8.6), including a substitution of sin(qi) = 2t/(1 + t2) and cos(qi) = (1 − t2)/(1 + t2), gives a
quartic equation in t = tan(qi/2). (Quartic equations can still be solved quite efficiently.) The two real solutions
for qi correspond to the two intersections of (i) the circle generated by rotating a link of length lbi about the axis
of the actuated joint, and (ii) the sphere of radius lti around ti. The other two solutions of the quartic are always
complex.

8.6 Forward force kinematics

For serial manipulators, the end-effector twist is the sum of the contributions of each joint velocity. Dually, for
parallel manipulators, the end-effector wrench is the sum of the contributions of each actuated joint’s torque or
force. If each leg of the parallel manipulators has six joints, this contribution of each actuated joint is exactly the
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partial wrench of the joint in its own leg, i.e., the force felt at the end-effector when all other joints generate no
force. Hence, the formula for the FFK of a parallel manipulator (with n ≥ 6 six-jointed legs) follows immediately:

w
ee = (G1 . . . Gn)




τ1

...
τn


 = G(T )τ , (8.8)

with G the wrench basis of the manipulator, which depends on the pose T of the end-effector platform. (Hence,
the forward position kinematics have to be solved before the forward force kinematics.)

Figure 8.8: UPS, PUS and RUS “legs.” “R” stands for revolute joint, “P” for prismatic joint, “S” for spherical
joint and “U” for universal joint.

8.6.1 Partial wrenches for common “legs”

Figure 8.8 shows some examples of serial kinematic chains that are often used as “legs” in a parallel robot. The
UPS is the “leg” structure for the Stewart-Gough platform, the PUS for the Hexaglide, [17], and the RUS for the
HEXA design, [6, 37]. The partial wrench for all joints in these special chains can be found by inspection.

UPS chain The partial wrench for one of the three revolute joints in the spherical joint is the sum of:

• A moment orthogonal to the plane formed by the two other joints in the S joint. This moment doesn’t have
a component along the other revolute joints of the S joint. It will, however, cause components along the two
revolute joints of the U joint.

• A force through the center of the spherical wrist, orthogonal to the axis of the P joint and the joint in the S
joint for which the partial wrench is calculated. This force generates reaction moments in the U joint only. The
magnitude of this force must be such that it compensates the influence of the moment mentioned above.

The partial wrench of each revolute joint in the U joint is a pure force determined geometrically by the following
constraints:
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• It intersects the center of the spherical joint.

• It is orthogonal to the P joint axis.

• It lies in the plane of this P joint axis and axis of the other revolute joint in the U joint.

Finally, the partial wrench for the P joint is a pure force along its axis. In most designs, only this P joint is
actuated, such that finding the corresponding column in the wrench Jacobian G is very simple.

PUS chain The partial wrench for each revolute joint in the U and S joints is found exactly as in the case of a
UPS structure. The partial wrench for the P joint is a pure force along the line through the centers of the U and
S joints.

RUS chain The partial wrench for the R joint is a pure force along the line through the centers of the U and
S joints. The partial wrench for a revolute joint in the S joint is the sum of:

• A moment orthogonal to the plane formed by the two other joints in the S joint. This moment doesn’t have a
component along the other revolute joints of the spherical wrist. It will, however, cause components along the
two revolute a force through the center of the U joint

• A force through the center of the spherical wrist, orthogonal to the axis of the joint for which the partial wrench
is calculated, and coplanar with the axis of the R joint. This force generates reaction moments in the U joint
only. The magnitude of this force must be such that it compensates the influence of the moment mentioned
above.

The partial wrench for the revolute joints in the U joint is a force along the line that intersects the center of the
S joint, the axis of the R joint, and the axis of the other revolute joint in the U joint.

b1 b3b4
b5

b6
b2

t3
e4

r32 r31 t1t2

e6
e5

Figure 8.9: 321 structure, with notations. ti is the point where i legs intersect. ei is a unit vector along the ith
leg.
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8.6.2 Wrench basis for 321 structure

The Jacobian matrix J for the serial 321 structure was derived by inspection (Sect. 7.8.3), when using a reference
frame with origin in the wrist centre point, i.e., the point where three of the joint axes intersect. Dually, the
wrench basis G of the parallel 321 structure can be found by inspection, when using a reference frame with origin
in the intersection point of the three prismatic legs, i.e., point t3 in Fig. 8.9. Because the partial wrench for a
UPS leg is a pure force along its axis, G has the following form:

3G =

(
e1 e2 e3 e4 e5 e6

0 0 0 r32 × e4 r32 × e5 r31 × e6

)
. (8.9)

Again, this matrix has a vanishing off-diagonal 3 × 3 submatrix.

8.7 Inverse velocity kinematics

Dual reasoning to the case of the inverse force kinematics for serial manipulators yields the inverse velocity
kinematics (“IVK”) of any parallel manipulator (with at least six six-jointed legs), i.e., the equality of the
instantaneous power generated in joint space on the one hand, and in Cartesian space on the other hand, leads
straightforwardly to the following “Jacobian transpose” equation:

q̇ = (∆̃G)T
t
ee. (8.10)

Again, a direct derivation of the same result exists:

Inverse velocity kinematics

Step 1 Let l̇i be the translational velocity of the end point of the ith leg, i.e., of the point connected
to the end-effector platform. Place a reference frame {i} with origin at the end point of leg i, and
with its Z axis along li. The unit vector ei

z = li/li in this direction is known from the IPK.

Step 2 The twist bst
ee of the end-effector is given with respect to the base frame {bs}, and with

components expressed in this base frame. The second three-vector in this twist represents the
translational velocity of the virtual point on the end-effector that instantaneously coincides with
the origin of the base frame. What we need is the instantaneous translational velocity of the point
that coincides with the origin of {i}. The transformation formula (6.25) in Sect. 6.6 yields:

it
ee = bs

iS bst
ee, with bs

iS =

(
bs
iR 0[

ip
i,bs

]
bs
iR

bs
iR

)
. (8.11)

The linear velocity component in the screw twist it
ee is the requested velocity, expressed in refer-

ence frame {i}.

Step 3 We know the third column of i
bsR, i.e., bse

i
z. Hence, we know the third row of bs

iR = i
bsR

T .
The vector piee,bs is also known (Eq. (8.1) and Fig. 8.4):

piee,bs = −(pbs,ee + pee,iee) = −li − pbs,ibs . (8.12)

Step 4 The velocity l̇i corresponds to the sixth component of it
ee, i.e., the Z component of the

translational velocity of the origin of {i}. To calculate this component, we need the sixth row of
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bs
iS. By definition, this sixth row equals the sixth column of bs

iS
T . The first three rows of this

column are calculated from Eq. (8.11):

([
ip

iee,bs
]

bs
iR

)T
= bs

iR
T

[
−ip

iee,bs
]

= i
bsR

[
ip

bs,iee

]

=
[
bsp

bs,iee

]
i

bsR.

So, the last column of this expression is

[
bsp

bs,iee

]
bse

i
z = bsp

bs,iee × bse
i
z. (8.13)

The last three rows are the last column of bs
iR

T , which is the unit vector along the Z axis of frame
{i}, expressed in frame {bs}: bse

i
z.

The velocity l̇i (expressed in {i}) is then

l̇i = (it
ee)6 =

(
bsp

bs,iee × bse
i
z

bse
i
z

)T

bst
ee =

(
∆̃

(
bse

i
z

bsp
bs,iee × bse

i
z

))T

bst
ee. (8.14)

Step 5 The six-vector in Eq. (8.14) between the ∆̃ and the end-effector twist bst
ee is the screw that

represents a pure force along li. For a Stewart-Gough leg along this direction li, this corresponds
to the definition of the actuated joint’s partial wrench. Hence, the ith column of the “Jacobian
transpose” equation (8.10) is found.

For a HEXA leg, a similar reasoning can be followed, but now the Zi-axis of the frame {i} is to
be placed along the direction of the top link of the leg (lti in Fig. 8.7). A force along this direction
is also the partial wrench for the actuated revolute joint in the HEXA leg, since it generates no
torques in any of the other joints of the leg.

In the equation above, we omitted the trailing “bs” subscript for the twist tee, since this equation
is valid for all reference frames (if, of course, the Jacobian matrix is expressed with respect to this
same reference frame!).

8.8 Forward position kinematics

The forward position kinematics (“FPK”) solves the following problem: Given the vector of leg positions q =
(q1 . . . qn)T , what is the corresponding end-effector pose? This problem is in general highly nonlinear, and is
dual to the IPK of serial manipulators. FPK algorithms have to solve a 40th degree polynomial for a general
parallel structure, [32]; this reduces to a 16th degree polynomial for the special designs of the Stewart-Gough
platform, [14, 29]. The following subsections discuss how to solve the IPK problem numerically, but also which
designs allow closed-form solutions.

Fact-to-Remember 59 (Forward kinematics)
No closed-form solution exists for the forward position kinematics of a general parallel
structure, and to one set of joint positions correspond many end-effector poses (“configu-
rations,” or “assembly modes”).
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8.8.1 General parallel structure

The numerical procedure, [10, 36], runs along the same lines as the IPK for a serial robot (Sect. 7.9):

Numerical FPK

Step 0 Start with an estimate T̂ 0 of the end-effector pose that corresponds to the vector q of six
leg lengths. T̂ 0 is the first in a series of iterations, so initialise this iteration as

i = 0, T̂ i = T̂ 0. (8.15)

Step 1 Use the inverse position kinematics to calculate (i) the joint positions q̂i that correspond to

the estimate T̂ i, and (ii) the error leg length vector ∆qi:

∆qi = q − q̂i. (8.16)

Step 2 Calculate the wrench basis Gi that corresponds to the latest estimate T̂ i, by means of the
IPK routine of Sect. 8.5 and the partial wrench of the actuated joints in each leg.

Step 4 Use the inverse of the “Jacobian transpose” equation (8.10) to calculate a new infinitesimal

update t∆,i+1 for the current estimate T̂ i of the end-effector pose:

t∆,i+1 = (∆̃Gi)
−T ∆qi. (8.17)

Step 5 Update T̂ i:
T̂ i+1 = T̂ iT (t∆,i+1). (8.18)

T (t∆,i+1) is the homogeneous transformation matrix that corresponds to the infinitesimal dis-
placement twist t∆,i+1, Eq. (6.18).

Step 6 The iteration stops if ∆qi is “small enough.”

Step 4 of this algorithm requires the inverse of the wrench basis G. Hence, this appoach can only be applied
unambiguously to manipulators with six actuated joints. As in all numerical algorithms, a good start configuration
is required, such that the Newton-Raphson type of iteration used in the numerical procedure can converge to
the desired solution. Solving the IPK of a serial robot (Sect. 7.9.1) requires a joint space start configuration;

the FPK for parallel robots, however, requires a Cartesian space initial estimate [24], i.e., an estimate T̂ 0 of the
end-effector pose. Due to the limited workspace of parallel manipulators, the “zero configuration” end-effector
pose of the manipulator could serve as an appropriate initial estimate. Moreover, one often is only interested in
the solution with the same configuration as this zero configuration. Note however that no strict definition exists
for the zero configuration.

8.8.2 Closed-form FPK for 321 structure

Only a very limited number of fully parallel kinematic designs with a closed-form FPK solution is known. The
321 structure is one example; the other examples are:

1. Linearly dependent base and end-effector platforms. A closed-form solution to the FPK exists if the coordinates
of the leg pivot points on the end-effector are particular linear combinations of the coordinates of the pivot
points on the base, [7, 39]. A special case occurs when both platforms are similar hexagons [21, 34, 38], i.e.,
the pivot points on both platforms lie on polygons that are equal up to a scaling factor, Fig. 8.10. (This design
seems attractive at first sight, but it turns out to have a very bad singularity manifold, [8].)
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Figure 8.10: Two parallel manipulator designs that allow a closed-form forward kinematics solution: base and
end-effector platforms are similar hexagons (left), or five leg pivot points are collinear (right).

2. Five collinear pivot points. A closed-form solution to the FPK exists if the base and/or end-effector contains
five collinear pivot points, [40] (Fig. 8.10).

The following paragraphs give the full mathematical treatment for the the 321 design only. As mentioned before,
this 321 design has a tetrahedral substructure, formed by three legs (Fig. 8.5). The following sides of this
tetrahedron are known (Fig. 8.11): the lengths between the top T on the end-effector and the points P,Q, and
R on the base (since these are measured), and the lengths of the sides PQ, QR and RP (since these are design
constants). The following paragraphs show how to find the position coordinates of the top point T .

P
T lrlqlp

Q
R

Figure 8.11: Tetrahedral substructure of the 321 structure.

Let p = (px py pz)
T , q = (qx qy qz)

T and r = (rx ry rz)
T be the coordinate three-vectors (with respect to

an arbitrary world reference frame) of the base points P , Q and R, respectively. Let t = (tx ty tz)
T be the

(unknown) coordinate three-vector of the top T ; and let s = (sx sy sz)
T be the vector t − p from the base point

P to the top T . If lp is the length of this side PT , then

s2
x + s2

y + s2
z = l2p. (8.19)

Let a = (ax ay az)
T be the (known) vector from P to Q (i.e., a = q − p), with length a, and b = (bx by bz)

T the
(known) vector from P to R (i.e., b = r − p), with length b. Let c = (cx cy cz)

T be the (unknown) vector from
Q to T ; its length lq is known. Let d = (dx dy dz)

T be the (unknown) vector from R to T ; its length lr is known.
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Hence
a − s = −c,

b − s = −d.

Taking the dot products of these identities with themselves gives

axsx + aysy + azsz = (l2p + a2 − l2q)/2, (8.20)

bxsx + bysy + bzsz = (l2p + b2 − l2r)/2. (8.21)

The right-hand sides of these equations are completely known, as well as the scalars ax, ay, az, bx, by and bz. So,
in general, one can express sx and sy in terms of sz, by elimination from Eqs (8.20) and (8.21). Equation (8.19)
then yields a quadratic equation in sz, with two solutions. Backsubstitution of the result in (8.20) and (8.21)
yields sx and sy. The coordinate three-vector t of the top T is then simply t = p + s. If the quadratic equation
in sz has only complex roots, the lengths of the sides of the tetrahedron are not compatible with the dimensions
of the base, i.e., the tetrahedron cannot be “closed” with the given lengths. Note that (i) the coordinates of the
top of a tetrahedron are found from linear and quadratic equations only, and (ii) the two solutions correspond to
reflections of the top point T about the plane PQR.

Until now, the position of only one point of the top platform is known. However, finding the positions of
the other points is done by repeating the tetrahedron algorithm above: the point on the top platform that is
connected to two legs also forms a tetrahedron with known lengths of these two legs as well as of the length of the
connection to T . Hence, the position of this point can be found. A similar reasoning holds for the third point.
Since we know the position coordinates of three points on the end-effector platform, we can derive its orientation,
[1]. Conceptually the simplest way to do this is to apply the tetrahedron algorithm four more times: the three
leg pivot points on the top platform are the tetrahedron base points, and the four vertices of the end-effector
frame (i.e., its origin and the end-points of the unit vectors along X,Y and Z) are the tetrahedron top points.
The rotation matrix of this end-effector frame is then straightforwardly found by subtracting the coordinates of
the frame origin from the coordinates of the end-points of the frame unit vectors.

The tetrahedron procedure has been applied to three tetrahedrons in the 321 structure. Each application gives
two different configurations. So, the 321 parallel manipulator has eight forward position kinematics solutions.

8.8.3 Closed-form FPK: sensing redundancy

Another approach to construct closed-form FPK solutions exists, and it works with all possible kinematic designs:
add extra sensors. Two complementary approaches are known, [4, 16, 20, 21, 25, 26, 30]:

1. Add extra non-actuated legs whose lengths can be measured. In this way, it is, for example, possible to (i)
construct a six-legs substructure that has one of the above-mentioned closed-form architectures, or (ii) to build
tetrahedral substructures as in Figure 8.11. Each tetrahedron unambiguously determines the position of one
point of the moving platform.

2. Add position sensors to one or more of the passive joints in the existing legs. In this way, it is for example
possible to measure the full position vector li of the ith leg, instead of only its length qi.

The drawbacks of adding more sensors to the manipulator are: (i) the system becomes more expensive, (ii) the
extra sensors take up space which decreases the already limited free workspace of the manipulator even further,
and (iii) due to measurement noise, manufacturing tolerances, etc., the FPK results can become inconsistent
(since one gets more than six measurements for only six independent variables). On the other hand, extra sensors
facilitate the calibration of the robot.
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8.9 Forward velocity kinematics

The forward velocity kinematics (“FVK”) of a parallel robot are dual to the inverse velocity kinematics of a serial
robot, Sect. 7.10.

8.9.1 General parallel robots

The obvious numerical technique to solve the FVK inverts the “Jacobian transpose” equation (8.10):

t
ee = (∆̃G)−T q̇. (8.22)

This approach requires the FPK solution, in order to construct the wrench basis G.

vr
vp Q

vt _lr
P

_lq_lp
T

Rvq
Figure 8.12: Velocities in a tetrahedron of the 321 structure.

8.9.2 Closed-form FVK for 321 structure

The wrench basis G of Eq. (8.9) has a 3 × 3 submatrix of zeros, and hence it is invertible symbolically as:

G =

(
A B

0 C

)
⇒ G−1 =

(
A−1 −A−1BC−1

0 C−1

)
. (8.23)

And the matrices A−1 and C−1 are also easy to find by inspection. For example, the first row of A−1 consists
of the vector orthogonal to the second and third columns of A, and having a unit scalar product with the first
column of A. Similarly for the other rows, and also for the matrix C−1.

FVK with tetrahedron algorithm. As for the forward position kinematics, the forward velocity kinematics
of the 321 design can also be found directly, as an iterative solution of a tetrahedral substructure. Indeed, assume
now that also the velocity three-vectors vp,vq and vr of the base points are given, Fig. 8.12. The instantaneous
velocity vt of the top is the sum of the top point velocities generated by each of the base point velocities
individually, keeping the two other base points motionless. Hence, assume vq = vr = 0 and vp 6= 0. Since Q
and R do not move and the lengths lq and lr do not change, the top point can only move along a line that is
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perpendicular to the direction QT as well as to the direction RT . Hence, the unit direction vector e of the top’s
instantaneous velocity is found from:

0 = e · (t − q), (8.24)

0 = e · (t − r), (8.25)

1 = e · e, (8.26)

with q, r and t the position three-vectors of the points Q,R and T . This set of equations is similar to Eqs (8.19)–
(8.21), and hence again requires only linear and quadratic equations. At this point, we have a known velocity
vp of one end of the tetrahedron side PT , and an unknown velocity vt (i.e., unknown magnitude vt but known
direction e) at the other end of the rigid link PT . Hence, they must be such that the length lt of the leg does not
change. This means that both velocities have the same projection along the direction of the leg. This direction
is instantaneously given by the vector t − p. Hence

0 =
dlt

dt
= vp · (t − p) − vte · (t − p). (8.27)

This equation gives vt since p,vp, t, and the direction e of vt are known. Repeating the same reasoning for
the similar cases {vr = vp = 0,vq 6= 0} and {vp = vq = 0,vr 6= 0}, and summing the result, yields the total
instantaneous velocity of the top. And as before, this tetrahedron algorithm can be applied iteratively to all three
points on the end-effector platform. This yields the velocity of these three points. From the velocity of three
points, one can find the angular velocity of the platform; see [2, 11, 33].

8.10 Singularities

Equation (8.22) shows that the forward velocity kinematics of a fully parallel manipulator becomes singular if the
wrench basis matrix G becomes singular. This means that at most only five of its six screws are independent,
and hence one or more force resistance degrees of freedom are lost. In other words, the manipulator has gained
one or more passive instantaneous motion degrees of freedom. Note again that a singularity occurs in general not
just in one single position of the robot, but in a continuously connected manifold.

8.10.1 Singularities for the 321 structure

The singularities of the 321 structure are easily found from Eq. (8.9): det(G) = 0 ⇔ det(e1 e2 e3) = 0 and det(r32×
e4 r32 × e5 r31 × e6) = 0. Hence, the “321” structure has three singularities (or rather, singularity manifolds):

“3”-singularity : the “3”-point t3 lies in the plane of the “base” formed by b1, b2 and b3. This means that the
three unit vectors e1,e2 and e3 along the first three legs have become linearly dependent: the forces generated
by the first three legs form only a two-dimensional space. In practice, the platform will jump unpredictably to
one of two sub-configurations, “3-up” or “3-down.”

“2”-singularity : the “2”-point t2 is coplanar with points t3, b4 and b5, hence det(r32×e4 r32×e5 r31×e6) = 0,
because the first two columns are dependent. This singularity separates two sub-configurations, “2-up” and
“2-down.” Its physical interpretation is the same as in the “3”-singularity.

“1”-singularity : the “1”-point t1 is coplanar with points t3, t2 and b6. Hence, det(r32×e4 r32×e5 r31×e6) = 0,
because all three vectors in this determinant are orthogonal to the same vector r32 and so must be dependent.
Any force generated in this plane by leg 6 is a linear combination of the forces in this plane generated by
the other legs. This singularity again separates two sub-configurations, “1-up” and “1-down.” Its physical
interpretation is again the same as in the “3” and “2”-singularities.
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Hence, the “321” structure has three singularities and eight configurations, each of these eight labelled by a binary
choice of sub-configuration (e.g., “3-up, 2-down, 1-up”). (The names of the singularities and configurations are
not standardized!)

8.11 Redundancy

A parallel manipulator is called redundant if it has more than six actuated joints. Such a design could be
advantageous for several reasons, such as:

1. The manipulator keeps full actuation capability around singularities.

2. More legs make the load to be moved by every leg smaller, hence heavier loads can be carried, and with higher
speeds.

3. The robot can move between different assembly modes, which increases its workspace.

On the other hand, extra legs increase the collision danger and the cost. Dually to a redundant serial manipulator,
a redundant parallel manipulator has no choice in optimizing leg motion (the motion of all legs are still coupled
by the closure equations (8.1) and their time derivatives!) but it can optimise the force distribution in its legs.
The reasoning for redundant serial manipulators (Sect. 7.14) can be repeated here, with q̇ replaced by τ , and tee

by wee:

1. A null space of leg forces exists, i.e., there is an infinite set of leg forces that cause no end-effector wrench, but
cause internal forces in the platforms:

Null (G) =
{
τN | G τN = 0

}
. (8.28)

This null space depends on the current platform pose.

2. If a wrench wee acts on the end-effector, it can be statically resisted by a set of leg forces that minimises the
static deformation of the legs, and hence maximises the position accuracy. The optimization criterion is as
follows: 




min
τ

P =
1

2
τT K−1τ ,

such that w
ee = G τ .

(8.29)

The positive scalar P is the potential energy stored in the manipulator, and generated by deforming the
compliance k−1

i of each leg by the force τi in the leg; the matrix K is the joint space stiffness matrix, i.e., the
diagonal matrix diag(k1, . . . , kn), if there are n legs in the manipulator. The same reasoning as for a serial
redundant manipulator applies, with q̇ replaced by τ , J by G, M by K−1, and tee by wee. Hence, the optimal
solution is given by the dual of Eq. (7.65)

τ = KGT
(
GKGT

)−1

w
ee (8.30)

, G
†
Kw

ee. (8.31)

G
†
K is the weighted pseudo-inverse, with stiffness matrix K acting as weighting matrix on the space of joint

forces.
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8.11.1 Summary of dualities

SERIAL PARALLEL

FPK easy, unique difficult
multiple solutions

IPK difficult easy, unique
multiple solutions

FVK always defined redundancy, singularities
column of J = twist of joint axis

tee = Jq̇ tee = (∆̃G)−T q̇

FFK redundancy, singularities always defined
column of G is partial wrench of joint

wee = (∆̃J)−T τ wee = Gτ

IVK redundancy, singularities always defined

q̇ = J−1
tee q̇ = (∆̃G)T tee

IFK always defined redundancy, singularities

τ = (∆̃J)T wee τ = G−1
wee

Singularities rank(J) drops rank(G) drops
loose active motion degree of freedom loose active force degree of freedom
gain passive force degree of freedom gain passive motion degree of freedom

Redundancy J has null space: motion distribution G has null space: force distribution

q̇ = J
†

M−1t
ee τ = G

†
Kwee

Closed-form 321: intersecting revolute joints 321: intersecting prismatic joints
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Chapter 9

Mobile robot kinematics

9.1 Introduction

This Chapter treats mobile robots, i.e., devices such as unicycles, bicycles, cars, and, especially, the mobile devices
that have two independently driven wheels on one axle and one or more passive support wheels on a second axle
(Fig. 9.1), [15, 18]. This text calls them “differentially-driven” or “caster” robots. A caster wheel (or “castor”
wheel) is a wheel mounted in a swivel frame, and used for supporting furniture, trucks, portable machines, etc.
The caster wheel is not actuated. This text only considers mobile robots that move over a plane. Hence, they have
two translational and one rotational degree of freedom; the rotation axis is perpendicular to the translations. This
configuration space is nothing else but SE(2), Sect. 3.7. The joint space for a car-like robot is one-dimensional
(turning the steering wheel does not move the robot!), but it is two-dimensional for a differentially-driven robot.

Mobile robots, at first sight, are rather different in nature from the serial and parallel manipulators of the
previous Chapters. However, this Chapter will highlight many similarities, such that no new concepts are needed
for a comprehensive treatment of mobile robot kinematics.

Nonholonomic constraint. The common characteristic of mobile robots is that they cannot be given a velocity
which is transversal to the axle of their wheels. A differentially-driven robot has one such constraint (the caster
wheels are mounted on a swivel and hence give no constraint); bicycles and cars have two constraints: one on the
front wheel axle and one on the rear wheel axle. These constraits are nonholonomic constraints on the velocity
of the robots, [10, 13], Sect. 7.14, i.e., they cannot be integrated to give a constraint on the robots’ Cartesian
pose. This means that the vehicle cannot move transversally instantaneously, but it can reach any position and
orientation by moving backward and forward while turning appropriately. Parking your car is a typical example
of this maneuver phenomenon. The nonholonomic constraints reduce the mobile robot’s instantaneous velocity
degrees of freedom, and hence most robots have only two actuated joints:

1. The two driven wheels in the case of a differentially-driven robot.

2. The driven wheels (driven by only onemotor!), and the steering wheel of a car-like mobile robot. Only the
driving speed is an instantaneous (or “first order”) degree of freedom; the speed is only of second order, since
by itself it does not generate a motion of the mobile robot.

Differentially-driven robots can turn “on the spot,” while car-like robots cannot. Note the following difference
between mobile robots on the one hand, and serial and parallel robots on the other hand: the angles of the wheel
joints don’t tell you where the vehicle is in its configuration space, and vice versa. This means that the position
kinematics of mobile robots are not uniquely defined.
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tri-aural sensor

laser-scanner

ultrasonic sensor

caster wheel
actuated wheel

Figure 9.1: The “LiAS” mobile robot of K.U.Leuven-PMA with two caster wheels and two driven wheels. The
robot is equipped with (i) an array ultrasonic sensors around the perimeter (in the black stripe just above the
wheels); (ii) an independently moving set of three ultrasonic sensors (tri-aural sensor, [16]); (iii) a laser scanner
(not well visible at the centre of the vehicle); and (iv) gyroscopes (hidden). (Photograph courtesy of J. Vandorpe.)

Applications. Mobile robots are used for different purposes than serial and parallel manipulators, i.e., they
mainly transport material or tools over distances much larger than their own dimensions. They have to work in
environments that are often cluttered with lots of known and unknown, moving and immobile obstacles. The
requirements on their absolute and relative accuracies, as well as on their operation speeds, are about an order
of magnitude less stringent, i.e., of the order of one centimeter and ten centimeters per second, respectively. The
last decade, much effort has been spent in automation of truck and car navigation, in constrained areas such as
container harbours, or more “open” areas such as highways.

Special kinematic designs. Most academic or industrial mobile robots have different kinematic features with
respect to real-world trucks or passenger cars, for the sole reason of kinematic simplicity. The major simplifications
are

1. Two independently driven wheels. This allows accurate measurement and control of the wheels’ rotation. The
speed difference between both wheels generates rotation of the vehicle. Moreover, vehicles equipped with two
independently driven wheels can rotate on the spot.

2. No suspensions. In normal cars, the suspension compensates discomforting influences of the car’s dynamics at
high speeds and high disturbances. This goal is achieved by deformation and/or relative displacement of some
parts in the suspension. This means that the position and orientation of the wheels cannot be measured and
controlled directly. For this reason, mobile robots don’t have suspensions. Hence, their speeds are limited.

3. Holonomic mobile robots (also called omnidirectional vehicles) have been developed in many academic and
industrial research labs. These devices use special types of wheels or wheel-like artifacts as in Fig. 9.2, [1, 12],
or spheres driven by three or more rollers, [8, 19, 20].
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Figure 9.2: Example of a holonomic wheel. The passive “rollers” allow rolling of the wheel in all directions.

Fact-to-Remember 60 (Basic ideas of this Chapter)
Mobile robots are simpler than serial and parallel robots since only planar motions are in-
volved. They are more complex than serial and parallel robots, because of the nonholonomic
constraints on their instantaneous velocity. At the velocity level, mobile robots behave as a
special type of parallel robot (i.e., it has different connections to the ground), such that this
Chapter requires no new concepts.

9.2 Rigid body pose in SE(2)

A mobile robot is a rigid body in E3 which is constrained to move in a plane. Whenever coordinate representations
are used, this text assumes that the XY -planes of (orthogonal) reference frames coincide with this plane. The
robots’ position and orientation are given by three parameters with respect to a world or base reference frame
{bs}, Fig. 9.3: the X and Y components (x, y) of the origin of the “end-effector” reference frame on the robot
and the angle φ between the X-axes of base and end-effector frames. The end-effector frame is usually chosen
to coincide with the midpoint of the actuated wheel axle, for several reasons: the nonholonomic constraint gets
a simple coordinate expressions, and the influence of left and right driven wheels are symmetric. However, the
kinematics presented in the following Sections are independent of the choice of reference frames.

Since SE(2) (the configuration space of mobile robots) is a sub-group of SE(3) (the configuration space of all
rigid body poses), all concepts introduced in the previous Chapters are re-used in this Chapter in the simplified
form described in the following paragraphs.

Pose. The homogeneous transformation matrix (Eq. (6.1) in Sect. 6.2) reduces to (Fig. 9.3):

b
aT ,




b
aR(Z, φ)

x
y
0

0 1×3 1


 , with b

aR(Z, φ) =




cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


 . (9.1)
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In the context of mobile robot kinematics, this is simplified to either a 3× 3 matrix (denoted by the same symbol
b
aT ) or a finite displacement three-vector twist td:

b
aT =




cos(φ) − sin(φ) x
sin(φ) cos(φ) y

0 0 1


 , td =




φ
x
y


 . (9.2)

l
�Y feegv _� �yfbsg x Xd XY

Xcasterwheelfeeg vrfbsg
vl �Yy x
Y X

Figure 9.3: Geometric parameters of car-like robot (left) and differentially-driven robot (right).

Screw. The instantaneous screw axis (ISA) of Chasles’ Theorem (Fact. 13) reduces to an instantaneous centre
of (pure) rotation (ICR): the ISA is always orthogonal to the plane of the motion, and the ICR lies at the
intersection of this plane and the ISA. Similarly, Poinsot’s Theorem reduces to an instantaneous line of (pure)
force (ILF) in the plane. The coordinate six-vector of a mobile robot twist always contains three zeros, hence it
is represented by a three-vector (denoted by the same symbol):

tSE(3) =




0
0
ω
vx

vy

0




⇒ tSE(2) =




ω
vx

vy


 . (9.3)

Similarly, the 2D wrench three-vector becomes w = (fx fy m)T , but it results from putting to zero three other
elements in the 3D screw:

wSE(3) =




fx

fy

0
0
0
m




⇒ wSE(2) =




fx

fy

m


 . (9.4)
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A screw twist transforms with the 3D screw transformation matrix simplified as follows:




aω

avx

avy


 = b

aSt




bω

bvx

bvy


 with b

aSt =




1 0 0
y cφ −sφ

−x sφ cφ


 . (9.5)

Wrenches transform with the 3D screw transformation matrix simplified as follows:




afx

afy

am


 = b

aSw




bfx

bfy

bm


 with b

aSw =




cφ −sφ 0
sφ cφ 0

−ycφ + xsφ ysφ + xcφ 0







ω

bvx

bvy


 . (9.6)

The reciprocity between twists and wrenches, Eq. (3.7), becomes:

t
T ∆̃w = 0, with ∆̃ =




0 0 1
1 0 0
0 1 0


 , and ∆̃−1 = ∆̃T . (9.7)

9.3 Kinematic models

9.3.1 Equivalent robot models

Real-world implementations of car-like or differentially-driven mobile robots have three or four wheels, because
the robot needs at least three non-collinear support points in order not to fall over. However, the kinematics of
the moving robots can be described by simpler equivalent robot models: a “bicycle” robot for the car-like mobile
robot (i.e., the two driven wheels are replaced by one wheel at the midpoint of their axle, whose velocity is the
mean vm of the velocities vl and vr of the two real wheels) and a “caster-less” robot for the differentially-driven
robot (the caster wheel has no kinematic function; its only purpose is to keep the robot in balance). In addition,
Fig. 9.4 shows how car-like and differentially-driven mobile robots can be modelled by an equivalent (planar)
parallel robot, consisting of three RPR-legs (passive revolute joint, actuated prismatic joint, passive revolute
joint). The nonholonomic constraint is represented by a zero actuated joint velocity vc in the leg on the wheel
axles. A car-like robot has two such constraints; a differentially-driven robot has one. Since the constraint is
nonholonomic and hence not integrable, the equivalent parallel robot is only an instantaneous model, i.e., the
base of the robots moves together with the robots. Hence, the model is only useful for the velocity kinematics
of the mobile robots. The velocities in the two kinematic chains on the rear wheels of the car-like robot are not
independent; in the rest of this Chapter they are replaced by one single similar chain connected to the midpoint
of the rear axle (shown in dashed line in Fig. 9.4).

The car-like robot model in Figure 9.5 is only an approximation, because neither of the two wheels has an
orientation that corresponds exactly to the steering angle σ. In fact, in order to be perfectly outlined, a steering
suspension should orient both wheels in such a way that their perpendiculars intersect the perpendicular of the
rear axle in the same point. In practice, this is never perfectly achieved, so one hardly uses car-like mobile robots
when accurate motion is desired. Moreover, the two wheels of a real car are driven through a differential gear
transmission, in order to divide the torques over both wheels in such a way that neither of them slips. As a result,
the mean velocity of both wheels is the velocity of the drive shaft.

9.3.2 Centre of rotation

Figure 9.5 shows how the instantaneous centre of rotation is derived from the robot’s pose (in the case of a
car-like mobile robot) or wheel velocities (in the case of a differentially-driven robot). The magnitude of the
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Figure 9.4: Instantaneously equivalent parallel manipulator models for car-like robot (left) and differentially-
driven robot (right).

instantaneous rotation is in both cases determined by the magnitudes of the wheel speeds; the distance between
the instantaneous centre of rotation and the wheel centre points is called the steer radius, [18], or instantaneous
rotation radius rir. Figure 9.5 and some simple trigonometry show that

rir =





l

tan(σ)
, for a car-like robot,

d

2

vr + vl

vr − vl
, for a differentially-driven robot.

(9.8)

with l the wheelbase, [18]), (i.e., the distance between the points where both wheels contact the ground), σ the
steer angle, d the distance between the wheels of the differentially-driven robot, and vr and vl its wheel velocities
(Fig. 9.3).

icrrir � l icrrir vrvld
Figure 9.5: Instantaneous centre of rotation (icr) for car-like (left) and differentially-driven robots (right).
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Fact-to-Remember 61 (Car-like vs. differentially-driven robots)
Differentially-driven robots have two instantaneous degrees of motion freedom, compared to
one for car-like robots. A car-like mobile robot must drive forward or backwards if it wants
to turn but a differentially-driven robot can turn on the spot by giving opposite speeds to both
wheels. The instantaneous rotation centre of differentially-driven robots can be calculated
more accurately than that of car-like robots, due to the absence of two steered wheels with
deformable suspensions.

9.3.3 Mobile robot with trailer

Trailers can be attached to a mobile robot, in order to increase the load capacity of the system. The instantaneous
rotation centre for the trailer depends on the hinge angle α between truck and trailer, as well as on the hookup
length lh between the axle of the trailer and the attachment point on the axle of the truck (Fig. 9.6). The
kinematics become slightly more complicated if the trailer is not hooked up on the rear axle of the truck. An
interesting special case are the luggage carts on airports: the trailers follow the trajectory of the pulling truck
(more or less) exactly. It can be proven that this behaviour results from using a hinge exactly in the middle
between the axles of tractor and trailor, [7]. In general, the hinge is not in the middle, but closer to the truck
axle; the truck-and-trailer system then needs a wider area to turn than the truck alone.

Finally, note that the system truck-and-trailer becomes even more constrained than the single truck alone:
the two actuated degrees of freedom remain (i.e., one first-order and one second-order), but they now have to
drive six Cartesian degrees of freedom, three of the truck and three of the trailer.

�trailer truck

rotation centreof trailerrotation centreof truck
lh

Figure 9.6: Instantaneous rotation centres of truck with trailer.

9.4 Forward force kinematics

Mobile robots have instantaneously equivalent parallel robot models. Hence, as in the case of parallel robots, the
forward force kinematics are the easiest mapping between joint space and end-effector space. The FFK (Sect. 8.6)
uses the wrench basis G, Eq. (8.8), of the equivalent parallel manipulator. Since differentially-driven robots and
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car-like robots have different parallel manipulator models, their wrench bases are different too:

w
ee = castG




fr

fl

fc


 , w

ee = carG




fm

fc,1

fc,2


 . (9.9)

fr and fl are the traction forces required in the left and right wheel of the differentially-driven robot to keep the
end-effector wrench wee in static equilibrium; similarly, fm is the sum of the traction forces on both wheels of
the car-like robot. The fc,· are the forces generated by wee in the constraint directions. The wrench basis G

consists of the partial wrench of the actuated prismatic joints, Sect 7.12.1. These are easily derived by inspection
of Fig. 9.4: they are pure forces on the end-effector of the leg and through the axes of the two revolute joints.
Hence, for a differentially-driven robot the coordinate expression of G with respect to the end-effector frame {ee}
at the midpoint of the wheel axle (Figs 9.3) is:

eeGdd =




1 1 0
0 0 1
d

2
−d

2
0


 , (9.10)

with d the distance between both wheels. For a car-like robot, G is most easily expressed in a frame {icr} (parallel
to {ee} and with origin at the instantaneous centre of rotation), since both constraint manipulator legs intersect
at that point. The coordinate expression of G in {icr} is:

icrGcar =




1 0 cos(σ)
0 −1 − sin(σ)

rir 0 0


 , (9.11)

with rir the distance to the instantaneous centre of rotation, Eq. (9.8). Pre-multiplication with the screw trans-
formation matrix icr

eeSw gives the expression in the end-effector frame {ee}:

eeGcar =




1 0 cσ

0 −1 −sσ

−rir 0 1




icrGcar =




1 0 cσ

0 −1 −sσ

0 0 −rircσ


 . (9.12)

9.5 Inverse velocity kinematics

Again using the equivalent parallel robot, the IVK for the example of the differentially-driven robot corresponds
to: 


vr

vl

vc


 = (∆̃Gdd)

T
t
ee, and




vm

vc,1

vc,2


 = (∆̃Gcar)

T
t
ee. (9.13)

vr and vl are the velocities of the right and left wheels (Fig. 9.4); vm is the velocity of the differential on the
rear wheel axle; vc, vc,1 and vc,2 are the velocities in the constrained directions. The nonholonomicity constraint
corresponds to:

vc = vc,1 = vc,2 = 0. (9.14)

The IVK has two important applications:
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1. The desired end-effector twist tee that is generated in motion planning and/or control software for mobile robots
must be such that these constraints are satisfied. If this is not the case, one could apply the kinetostatic filtering
of Sect. 7.15.2 to project the nominally desired end-effector twist tee onto the twist space of reachable velocities.
This projection involves a weighting between translational and rotational velocities. During motion control of
the mobile robot, this means that a choice has to be made between reducing errors in x or y (“distance”), or
φ (“heading”) independently. For example, no linear control law can achieve reduction in a transversal error
(i.e., Y in the {ee}) if the errors in either X or φ are zero, [11].

2. External sensors can produce measured end-effector twists tee. Using the IVK in Eq. (9.13) then yields the
corresponding wheel velocities and the transversal slip velocity.

9.6 Forward velocity kinematics

The forward velocity kinematics (FVK) for mobile robots tackles the following problems:

1. Differentially-driven robots: “If the motor velocities q̇r and q̇l of the right and left wheels are known, as well as
the wheel radii rr and rl, the distance d between both wheels, and the current pose (φx y)T of the robot, what
is then its corresponding twist tee?”

2. Car-like robots: “If the drive shaft rotation velocity q̇ and the steering angle σ are known, as well as the radius r
of the equivalent wheel, the wheelbase l, and the current pose (φx y)T of the robot, what is then its corresponding
twist tee?”

The wheel and motor velocities are linked, e.g., vl = rlq̇l.

Assumptions. Since the contact between wheels and floor relies on friction, the accuracy of the FVK heavily
depends on how well the following constraints are satisfied:

1. Non slipping. The wheels do not slip transversally, i.e., they obey the nonholonomicity constraint.

2. Pure rolling. The wheels do not slip longitudinally, so that the distance over which the outer wheel surface
rotates equals the distance travelled by the point on the rigid body to which the wheel axle is attached.

3. Constant wheelbase. The wheels constantly contact the ground in different points, due to the combined influence
of elasticity of the wheels and non-planarity of the ground.

4. Constant wheel diameter. Most wheels have non-negligible compliance, such that (dynamical) changes in the
load on each wheel generate changes in the wheel diameter. Hence, the relationship between motor and wheel
velocities changes too.

In order to prevent violation of these assumptions, the mobile robot should (at least) avoid jumps in its motion
since this is a major cause of slippage. The Chapter on motion planning will present some trajectories that have
continuous jerk, i.e., the acceleration of the mobile robot has no sudden jumps. In terms of your car driving
experience this translates into the property that one doesn’t have to turn the steering wheel abruptly.
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FVK algorithm. The FVK of the mobile robots follow straightforwardly from the FVK of the equivalent
parallel robots, Eq. (8.22). For example, in the differentially-driven robot case:

t
ee = (∆̃G)−T




vr

vl

vc = 0


 , (9.15)

and a similar expression for the car-like robot. The inverses of the wrench bases in Eqs (9.10) and (9.12 are easily
found:

(∆̃ Gdd)
−1 =




1

2d

1

2
0

− 1

2d

1

2
0

0 0 1




, and (∆̃ Gcar)
−1 =




1

rir
1 0

tan(φ)

rir
0 −1

− 1

rir cos(φ)
0 0




. (9.16)

So the FVK with respect to the midframe on the rear axle are given by:
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0


 . (9.17)

These FVK relationships could of course also be derived by inspection.

Fact-to-Remember 62 (Velocity kinematics for mobile robots)
The forward velocity kinematics are straightforward, but subject to inaccurate modelling
approximations. The inverse velocity kinematics are, in general, not uniquely defined.

9.7 Forward position kinematics

9.7.1 Dead reckoning—Odometry

The forward position kinematics of a mobile robot (i.e., estimating its pose from wheel encoder sensing only) is
called dead reckoning (a term originating in ship and airplane navigation) or odometry (from the Greek words
“hodos” and “metron”, meaning “road” and “measure” respectively), [18]. (An interesting historical note: the
Chinese invented a mechanical hodometer already in about 265 AD!) Contrary to the trivial case of (holonomic)
serial and parallel robots, dead reckoning for (nonholonomic) mobile robots must be performed by integration
of velocity equations such as Eq. (9.17). The literature contains several numerical integration procedures, such
as Euler’s scheme, the trapezoidal rule, or the family of Runge-Kutta rules, see e.g., [9]. Recall that general
rigid body velocities are not integrable, Sect. 5.3.6, due to the non-integrability of the angular velocity. For
motions on a plane, however, the angular velocity is integrable. This does not necessarily imply the integrability
of the total twist of a mobile robot: a pose twist is integrable (or “exact”), but a screw twist is not. Moreover,
any integration scheme will experience drift, due to numerical round-off errors. In the case of mobile robots,
however, this drift is increased by (i) the finite resolution of the sensors, (ii) the inaccuracies in the geometric
model (deformations), and (iii) slippage. Hence, the robot needs extra sensors to recalibrate regularly its pose
with respect to its environment.
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9.7.2 Sensors for mobile robots

By nature of both their nonholonomic kinematic character and the kind of environments in which they operate,
mobile robots are often equipped with both proprioceptive and exteroceptive sensors, [2]:

1. Proprioceptive sensors measure the “internal” state parameters of the robot: the motor positions and/or speeds
of the driving wheels and the steering wheel. The hardware used for these measurements is not different from
the revolute joint angle and velocity sensors used in serial manipulators, i.e., encoders and/or resolvers, [3].

2. Exteroceptive sensors measure “external” motion parameters of the robot, such as

(a) Its absolute orientation, by means of, for example, a gyroscope.

(b) Its absolute position, by means of, for example, a (D)GPS ((Differential) Global Positioning System), which
triangulates between signals from different satellites. The standard systems’ absolute accuracy of 20–100m
is such that this option is only useful during long-distance trajectories, not for motions within one single
building. Applications exist already in, for example, automatic harvesting. For indoor applications, more
accurate systems working with artificial “satellites” placed on the room’s ceiling are being used more and
more often.

(c) The orientation of (known or unknown, expected or unexpected) landmarks in the robot’s environment, by
means of, for example, cameras or a laser scanner that detects “bright spots” or digital code strips on the
landmarks.

(d) The distance to objects in the environment, by means of ultrasonic sensors, or, more accurately, laser range
finders.

From these measurements, and from some triangulation, the robot can estimate its relative pose with respect
to the landmarks. These external sensors serve three complementary purposes: (i) position and orientation
estimation; (ii) environment map building; and (iii) obstacle avoidance. (The Chapter on intelligent sensor
processing will discuss the latter two goals in more detail.) Their pose estimation capabilities are much worse
than the pose sensing capabilities of serial and parallel manipulators.

9.8 Inverse position kinematics

In principle, the inverse position kinematics for a mobile robot would have to solve the following problem: Given
a desired pose (φx y)T for the robot, what are the wheel joint angles that would bring the robot from its current
pose to the desired pose?” However, this problem is much more complicated than the corresponding problem for
serial and parallel manipulators, for several reasons: (i) infinitely many possible solutions exist; (ii) no analytical
(or, closed-form) decomposition approach is known, as was the case for serial and parallel robots; (iii) classical
linear control theory is not sufficient, [4, 5, 15, 17]. Some solution techniques will be presented in the Chapter on
motion planning.

9.9 Motion operators

From the previous Sections, it should be clear that a mobile robot cannot move instantaneously in all directions,
but that it is capable to reach all possible poses in a plane. This last capacity requires some motion planning
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that can be rather involved. The Chapter on motion planning will discuss these aspects in more detail, but here
we can already define some basic motion operators for mobile robots, [6, 14].

For differentially-driven robots, these two basic operators are:

ROTATE By applying opposite velocities to both wheels, a differentially-driven robot rotates instantaneously
about the midpoint of its wheel axle.

DRIVE By applying equal velocities to both wheels, a differentially-driven robot moves along its longitudinal
axis.

The third “motion degree of freedom” (i.e., moving along the direction of the wheel axis) is approximated by
the SLIDE operator, that is the commutator (or Lie bracket) of ROTATE and DRIVE: SLIDE = R−1D−1RD,
with D denoting the DRIVE operation, and R the ROTATE operation. The SLIDE operator must be interpreted
as follows: by driving a “little bit” forwards (D), then rotating a little bit to the left (R), then driving a little
bit backwards (D−1), and finally rotating a little bit to the right (R−1), the robot ends up in a position that is
translated a little bit along its wheel axle direction. The SLIDE operator becomes a transversal velocity in the
limit case that “little bit” becomes zero, i.e, (i) the travelled distances go to zero, and (ii) the motion times for
each operator go to zero too. Of course, this limit cannot be attained in practice!

For car-like robots, the two basic operators are:

DRIVE By applying a velocity to the wheel axle, a car-like robot moves along its longitudinal axis, or rather,
it rotates about the instantaneous rotation centre determined by the steering angle.

STEER By applying an angular velocity to the steering wheel, the direction of the motion generated by the
driving wheels of a car-like robot can be changed. Unlike all previously defined operators, the STEER operator
for a car-like robot does not induce a Cartesian motion, but only a change in the state of the robot.

The commutator of STEER and DRIVE generates a ROTATE operator, that rotates the robot about the
midpoint of its wheel axle. As in the case of the differentially-driven robot, the commutator of this ROTATE
operator and the DRIVE operator generates the SLIDE operator.

Most of the motion operators defined above correspond to a particular choice of basis twists in the instantaneous
twist space of the mobile robot. However, the STEER operator for car-like robots is not a twist: it is a second-
order operator that generates no velocity by itself.
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Chapter 10

Dynamics

10.1 Introduction

Dynamics studies how the forces acting on bodies make these bodies move. This text is limited to rigid body
dynamics, starting from Newton’s laws describing the dynamics of a point mass. Most of the introductory material
can be found in textbooks on classical physics and mechanics, e.g., [1, 5, 12, 13, 28, 34]. Research on the dynamics
of multiple rigid bodies has most often not been performed with only humanoid robots in mind, but has progressed
(more or less independently) in different research communities, each with their own emphasis:

1. Serial robot arms, [21, 30], with the emphasis on efficient, real-time algorithms. “Real time” means that
the robot control computer must be able to perform these calculations about 1000 times per second. A lot of
attention has also gone into redundancy resolution, singularity avoidance, and (on-line) parameter identification.
The human arm is highly redundant, and hence very dextrous and versatile. But it can end up in singular
configurations too: when, for example, your arm and wrist are completely stretched out, you cannot move any
further in the direction along the arm.

All dynamics algorithms discussed in this text assume that the physical parameters of the robot are rather
accurately known: dimensions of links, relative positions and orientations of connected parts, mass distribution
of links, joints and motors. Hence, advanced parameter identification techniques are required for humanoid
robots, because these type of robots will most likely have to carry or push unknown loads.

2. Computer graphics and animation. Here, the emphasis is on realistically looking interactions between different
(rigid and soft) bodies. Most often, bodies are not actuated by motors, but are falling onto each other, hit
by projectiles, or they are racing cars that have only one motorized degree of freedom. Computer graphics is
growing closer and closer to robotics, by paying more attention to the realistic simulation of human figures.

3. Spacecraft control, mainly investigating the effects of a free-floating basis, and structural flexibilities in moving
parts such as solar panels, [17, 18].

4. Modelling of cars, trucks and trains, taking into account a large number of bodies and motion constraints, non-
linear elements (such as real springs, dampers, and friction), and putting much emphasis on the development
of numerical integration schemes than can cope with the system’s large dimensions.

Humanoid robots require the integration of results from all above-mentioned research areas:

• Serial substructures. Basically, a humanoid robot consists of a number of serial parts: legs, arms, and head, all
connected to the same trunk, which in itself might consist of several bodies connected in series.
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• Real-time control. Humanoid robots must be able to calculate their motor torques in real time, otherwise
walking or running on two legs is impossible. The computational complexity of an algorithm is most often
expressed as O(Nk) (“order N to the kth power”), where N is the number of rigid bodies in the robot. O(Nk)
means that the time to compute the dynamics increases proportionally to the kth power of the number of
bodies in the system. This text deals only with the most computationally efficient case, where k = 1, i.e.,
so-called linear-time algorithms.

• Motion constraints. The feet of the humanoid robot are in contact with the ground; the arms can grasp objects
that are fixed in the environment; contacts with the environment result in closed kinematic loops (e.g., with
two feet on the ground, the motions of both legs are not independent because the ground acts as a rigid link
between both feet). All these interactions constrain the relationships between motor torques and resultant
motion to lie on lower-dimensional “constraint manifolds.”

• Free-floating base. When running, both feet are in the air, and there is no fixed support point.

• Redundancy resolution. Humanoid robots have a lot of redundancy, such that the same task can be executed in
infinitely many ways. This allows for optimization of the task, as well as for performing lower-priority subtasks
together with the main task. For example: avoidance of an obstacle or of a singular configuration by the legs,
trunk and arms, while the hands transport the load along the desired trajectory.

10.2 Forward and Inverse Dynamics

The Forward Dynamics (FD) algorithm solves the following problem: “Given the vectors of joint positions q,
joint velocities q̇, and joint forces τ , as well as the mass distribution of each link, find the resulting end-effector
acceleration Ẍ.” (We use the notation “Ẍ” for the six-dimensional coordinate vector of a rigid body acceleration,
although, strictly speaking, it is not the second-order time derivative of any six-dimensional representation of
position and orientation; also the velocity Ẋ is not such a time derivative. However, this notation is often used
in the dynamics literature.) The FD are used for simulation purposes: find out what the robot does when known
joint torques are applied.

Similarly, the Inverse Dynamics (ID) algorithm solves the following problem: “Given the vectors of joint
positions q, joint velocities q̇, and desired joint accelerations q̈, (or end-effector acceleration Ẍ) as well as the
mass matrix of each link, find the vector of joint forces τ required to generate the desired acceleration.” The ID
are needed for:

1. Control : if one wants the robot to follow a specified trajectory, one has to convert the desired motion into the
joint forces that will generate this motion.

2. Motion planning : when generating a desired motion for the robot end-effector, one can use the ID of the robot
to check whether the robot’s actuators will be able to generate the joint forces needed to execute the trajectory.

Finding algorithms to calculate the dynamics is much more important for serial robots than for parallel or mobile
robots: the dynamics of parallel and mobile robots are reasonably approximated by the dynamics of one single
rigid body. Moreover, mobile robots move so slowly (in order to avoid slippage) and their inertia changes so little
that dynamic effects are small. Parallel robots, on the other hand, have light links, and all motors are in, or
close to, the base, such that the contributions of the manipulator inertias themselves are limited. Hence, this
Chapter treats the dynamics of serial manipulators only; the interested reader is referred to the literature (e.g.,
[3, 4, 19, 24, 26, 27, 33]) for more details on the dynamics of mobile and parallel robots.

This text takes into account the dynamics of the robot links only, not that of the motors. Just be aware that
the motor inertia can be very significant, especially for the high gear ratios between motor shaft and robot link
shaft as used in most industrial robots.
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Parametric uncertainty. The FD and ID algorithms in this Chapter use models: kinematic models (i.e.,
the relative positions and orientations, and relative velocities of all joints), and dynamic models (i.e., the mass
distribution of each link). Of course, in real-world systems, this information is seldom known with high accuracy,
such that calibration or identification of the kinematic and dynamic parameters is required whenever high absolute
static and dynamic accuracy are desired. This Chapter treats the dynamics of ideal kinematic structures only,
i.e., they exhibit no friction, no backlash, and no flexibility. In general, these non-ideal effects increase when
transmissions between motors and joint axes are used.

10.3 Tree-structure topology

All joints in a typical humanoid robot are revolute; all links are perfect rigid bodies, with known mass properties
(total mass, center of mass, rotational inertia); each joint carries a motor; and there are no closed kinematic loops
(i.e., there is only one way to go from any link of the robot to any other link). This latter fact means that the
topology of the humanoid robot is a tree (Fig. 10.1): one of the rigid bodies in the trunk is the root, and the
head, the hands and the feet are the leafs. Note, however, that any node in a tree structure can be chosen as
root! The “bookkeeping” of node numbers changes when the root changes, and the recursive algorithms of the
next Sections will traverse the robot structure differently.

Tree structures are interesting, because their dynamics algorithms are straightforward extensions of those for
serial structures. It is well known that all nodes in a tree can be numbered in such a way that the root gets the
lowest number, and the route from the root to any node n passes only through nodes with lower numbers k < n
(Fig. 10.1). When two nodes are considered on the same path from the root to a leaf, then the node with the
lowest number is called the proximal node, and the other is the distal joint.

The algorithms in this text are presented for tree structures with only revolute joints. But they are easy to
extend to other types of joints (prismatic, spherical, or Cardan joints), unactuated joints, or closed kinematic
loops.

10.4 Frames—Coordinates—Transformation

Newton’s law f = ma is the foundation of in general dynamics, and hence also of robot dynamics. Newton’s law
is a relationship between force and acceleration vector. In order to be able to calculate with these physical vectors,
one needs their coordinates with respect to known reference frames. One also needs to know how to transform
the coordinate representations of the same physical vectors expressed in different reference frames. The following
subsections introduce (i) reference frames that are adapted to the mechanical structure of the (humanoid) robot,
(ii) six-dimensional rigid body forces and their coordinate transformations, and (iii) six-dimensional rigid body
velocities and their coordinate transformations.

10.4.1 Frames

Figure 10.2 shows a typical link in a humanoid robot, together with its basic reference frames. The link i is
connected to one single proximal link i−1 by a revolute joint with axis along zpi

; several distal links i+1, . . . , i+k
can be attached to it, by joints along the vectors zdi+1

, . . . ,zdi+k
. Without loss of generality, we assume that

the joint axes are the Z axes of orthogonal reference frames {pi} and {di+1} . . . {di+k}, with origins on the joint
axes. If the link is a leaf node in the robot, the distal “joint frames” are the user-defined end-effector frames. An
“end-effector frame” is any frame on the humanoid robot that is of interest to the user; typical end-effectors are
the feet, the hands, and the head (or rather, its ears and eyes).
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Figure 10.1: Tree topology of a typical humanoid robot. The nodes are rigid bodies, the edges are joints. (This
schematic picture makes no claim whatsoever towards completeness!)

Since the links are rigid, the relative position and orientation of {di+1} . . . {di+k} with respect to {pi} are
constant. The link connected at {di+1} has its “proximal” frame coinciding with {di+1}, up to a rotation about
zdi+1

, over an angle qdi+1
; this angle is measured. Its first and second time derivatives q̇di+1

and q̈di+1
are also

assumed to be measured, either directly, or by numerical differentiation of qdi+1
which is most often the case in

practice.

link i + 2
link i + 1zdi = zpi+1

ri+2

qi+1qi; _qi; �qi _qi+1; �qi+1link i
fdig
fpi+1g

ri
ri+1

link i� 1fpig
zpi

Figure 10.2: Reference frames and notation for links in tree-structured robot. “p” stands for “proximal,” and “d”
for distal.

10.4.2 Force/torque transformation

A point mass can feel linear forces only (represented by three-dimensional vectors f), while a rigid body can feel
both forces f and moments m, represented by a six-dimensional coordinate vector F = (f ,m) (called a wrench
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in the Kinematics Chapter). Every set of such forces and torques is equivalent to one single force and one single
torque applied at a given point of the rigid body. If such a resultant force f2 and torque m2 are known at a
point “2,” it is easy to find an equivalent set (f1,m1) at another point “1”:

f1 = f2, m1 = m2 + r1,2 × f2. (10.1)

These equations considers physical vectors only. To represent the coordinates of the force and torque vectors
acting in frame {i}, with respect to an absolute world frame, this text uses the notation F i:

F i =

(
f i

mi

)
. (10.2)

The notation for the coordinates is the same as for the physical vectors, because the interpretation will always be
clear from the context. The transformation of force and torque coordinates from frame {2} to frame {1} involves
the coordinates (r1,2,

2
1R) of frame {2} with respect to {1}:

F 1 = T
F
1,2 F 2, with T

F
1,2 =

(
2
1R 03×3

r̂1,2
2
1R

2
1R

)
. (10.3)

T
F
1,2 is the 6× 6 force transformation matrix. r̂ is the 3× 3 matrix that represents taking the cross product with

the vector r (expressed in frame {1}):

r̂ =




0 −rz ry

rz 0 −rx

−ry rx 0


 . (10.4)

Because of the orthogonality of R, and the anti-symmetry of r̂, the inverse transformation T
F
2,1 = (T F

1,2)
−1 is

simple:

T
F
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(
2
1R

T 03×3

−2
1R

T r̂1,2
2
1R

T

)
. (10.5)

10.4.3 Velocity/acceleration transformation

A point mass can have a translational velocity only, represented by a three-dimensional vector v, and a transla-
tional acceleration, a = v̇. However, the velocity of a rigid body contains both translational and angular velocity
components, v and ω; similarly for the body’s acceleration: a = v̇ and ω̇. The transformation of velocities and
accelerations between reference frames are similar (but not equal!) to those of forces. In physical vector form,
this gives:

ω1 = ω2, v1 = v2 + r1,2 × ω2. (10.6)

This text uses Ẋi to denote linear and angular velocity coordinates of frame {i} with respect to an absolute world
frame:

Ẋi =

(
vi

ωi

)
. (10.7)

(Note that the order of the linear and angular three-dimensional vectors v and ω is arbitrary. Making the

alternative choice, Ẋi =

(
ωi

vi

)
implies that the coordinate transformation formulae of the following paragraphs

have to be changed accordingly.) The coordinate form of Eq. (10.6) is:

Ẋ1 = T
V
1,2 Ẋ2, with T

V
1,2 =

(
2
1R r̂1,2

2
1R

03×3
2
1R

)
. (10.8)
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T
V
1,2 is the 6 × 6 velocity transformation matrix; it contains the same 3 × 3 blocks as the force transformation

matrix T
F
1,2 in Eq. (10.3). Note that we prefer notational convention over physical exactness: Ẋ is strictly

speaking not the time derivative of the position/orientation coordinates X, but we use this notation because of
its suggestive similarity with the point mass case. The same transformation as for velocities holds for accelerations
too:

Ẍ1 = T
V
1,2 Ẍ2, with Ẍ =

(
v̇

ω̇

)
. (10.9)

Again, the inverse transformation is simple:

T
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. (10.10)

Note that

T
F
2,1 =

(
T

V
1,2

)T

, T
V
2,1 =

(
T

F
1,2

)T

. (10.11)

10.4.4 Parametric uncertainty

The above-mentioned coordinate representations and transformations make implicit use of a lot of geometrical
parameters of the mechanical robot structure, i.e., the relative positions and orientations of the robot’s joint axes.
These parameters are in general only known approximately, such that they should be considered as uncertain
parameters in the robot model, for which (on-line or off-line) estimation techniques should be used.

10.5 Dynamics of a single rigid body

Newton’s law f = ma describes the dynamics of an unconstrained point mass. Any textbook on dynamics, e.g.,
[2], shows how to derive the motion law for a rigid body, i.e., a set of rigidly connected point masses. This derivation
is straightforward (albeit algebraically a bit tedious): apply Newton’s law to each “infinitesimal volume” of mass
in the rigid body, and take the integral over the whole body. We just summarize the results here, and stress the
important property that the dynamics are linear in the external force F = (f ,m), the acceleration Ẍ = (a, ω̇),
and the mass matrix (or, inertia) M = (m, I), but nonlinear in the velocity Ẋ = (v,ω):

F = M Ẍ + F b with F b =

(
ω × (ω × mrc)

ω × Iω

)
. (10.12)

F b is the so-called bias force, i.e., the force not due to acceleration, but to the current (angular) velocity. m
is the total mass of the body. rc is the vector from the origin of the reference frame in which all quantities
are expressed to the centre of mass of the body. I is the 3 × 3 angular inertia matrix of the rigid body with
respect to the current reference frame. Note that the bias force vanishes when (i) the centre of mass lies in the
origin of the reference frame, and (ii) the body is spherical, i.e., its inertia I is a multiple of the unit matrix.
Otherwise, the angular velocity generates a force due to the unbalance in the body. For example, assume you
spin around a vertical axis through your body, while holding a heavy object in your hand. The object will not
only be accelerated around the spin axis, but you will also feel a so-called “centripetal” force that tries to move
the object away from you.

Usually, one knows the inertia Ic with respect to the centre of mass; the relationship between Ic and the
inertia I at an arbitrary reference frame is:

I = Ic − mr̂
c
r̂

c. (10.13)
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r̂
c is the 3× 3 vector product matrix corresponding to rc; rc is zero in a reference frame with origin in the centre

of mass. Equation (10.13) shows that I is always a symmetric matrix. The 6 × 6 matrix M is the generalized
mass matrix :

M =

(
m13×3 mr̂

c

−mr̂
c

I

)
. (10.14)

The frame transformation properties of I and M are straightforwardly derived from the transformations of
velocities, forces, and accelerations:

I1 = 2
1R I2

2
1R

T , M1 = T
F
1,2 M2 (T F

1,2)
T . (10.15)

For example, the latter follows from the relationships in Eq. (10.11) and from:

f2 = M2 a2 ⇒ T
F
1,2f2 = T

F
1,2M2

(
(T V

1,2)
−1

T
V
1,2

)
a2,

⇒ f1 = T
F
1,2M2(T

V
1,2)

−1a1,

⇒ M1 = T
F
1,2M2(T

V
1,2)

−1.

Parametric uncertainty. The mass matrix and its coordinate representations and transformations also make
implicit use of the same geometrical parameters of the mechanical robot structure as mentioned in Section 10.4.4,
in addition to the three coordinates rc of the centre of mass, the total mass m of the body, and the six parameters
in the (symmetric) inertia matrix I. Again, these parameters are in general only known approximately, such
that they should be considered as uncertain parameters in the robot model, which require (on-line or off-line)
estimation techniques.

10.6 Mass, acceleration, and force projections

Figure 10.3 shows the basic building block of every robot: one link of a robot connected to another link through
a (revolute) joint. Forces act on both links, and these forces are related to the links’ accelerations through their
inertial properties. This Section explains

• how much of the acceleration of a proximal link is transmitted to its distal link;

• how much of the mass matrix of the distal link is felt by the proximal link;

• and how much of the force acting on the distal link is transmitted to the proximal link.

10.6.1 Inward mass matrix projection

The relationship between the acceleration Ẍ1 and the force F 1 of link 1 for an unconstrained link 1 is given by
the link’s mass matrix M1. However, if link 1 is connected to link 2, the force F 1 is not completely available
to accelerate link 1; or, in other words, it seems as if it has become “heavier.” This subsection explains how
to find this so-called articulated inertia Ma

1 of link 1, i.e., the mapping from the acceleration of the link to
the corresponding force, taking into account the influence of the distal link. So, assume that link 1 is given
an acceleration Ẍ1. In order to execute this acceleration, a force F 1 is needed. This force is partially used to
accelerate link 1 as if it were unconstrained, and a part F 2 of the force F 1 is transmitted through the revolute
joint and causes an acceleration Ẍ2 of link 2. Both accelerations can only differ in their component about the
common joint axis:

Ẍ1 − Ẍ2 = Z q̈2, (10.16)
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�X1
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Figure 10.3: A rigid body is connected to another rigid body by a revolute joint. The joint cannot transmit a
pure torque component about its axis, generated by the external forces.

with Z the six-dimensional basis vector of the joint, and q̈ the (as yet unknown) acceleration of the joint. (In a
frame with its Z axis on the joint axis, Z has the simple coordinate representation (0 0 0 0 0 1)T .) The
transmitted force F 2 cannot have a component about the revolute joint axis, hence:

ZT F 2 = 0. (10.17)

Because F 2 = M2Ẍ2, with M2 the mass matrix of link 2, one finds that:

ZT M2Ẍ1 = ZT M2Z q̈2, (10.18)

and

q̈2 =
(
ZT M2Z

)−1

ZT M2Ẍ1. (10.19)

Hence, the force F 1 needed to accelerate link 1 by an amount Ẍ1 is given by

F 1 = M1Ẍ1 +

(
M2 − M2Z

(
ZT M2Z

)−1

ZT M2

)
Ẍ1, (10.20)

= Ma
1Ẍ1, (10.21)

with Ma
1 = M1 + M2 − M2Z

(
ZT M2Z

)−1

ZT M2. (10.22)

Ma
1 the so-called articulated body inertia, [11], i.e., the increased inertia of link 1 due to the fact that it is

connected to link 2 through an “articulation” which is the revolute joint. The mass of link 2 is “projected” onto
link 1 through the joint between both links. The corresponding 6 × 6 projection operator P in

2 is:

P in
2 = 1 − M2Z

(
ZT M2Z

)−1

ZT . (10.23)

The superscript “in” stands for “inward,” i.e., from distal link to proximal link. The matrix P in
2 is indeed a

projection operator, because
P in

2 P in
2 = P in

2 . (10.24)

The total articulated inertia of link 1 is the sum of its own inertia M1 and the projected part P in
2 M2 of the

inertia of the second body:
Ma

1 = M1 + P in
2 M2. (10.25)
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Let’s take a closer look at Eq. (10.23). Z is a 6 × 1 vector; M2 is a 6 × 6 matrix. Hence, ZT M2Z is a scalar,

i.e., the element of M2 in the lower-right corner. And M2Z
(
ZT M2Z

)−1

ZT is the 6 × 6 matrix, which is a

multiple of the last column of M2. Hence, the projection operator adds more than just link’s 2 component of
inertia about the joint axis, unless the mass of link 2 is symmetrically distributed about the joint axis.

10.6.2 Outward acceleration projection

The acceleration “transmitted” through the joint follows from Eq. (10.16):

Ẍ2 =

(
1 − Z

(
ZT M2Z

)−1

ZT M2

)
Ẍ1, (10.26)

=
(
P in

2

)T
Ẍ1. (10.27)

Hence, P out
2 =

(
P in

2

)T
is the outward acceleration projector.

10.6.3 Inward force projection

Assume now that a force F 2 acts on link 2. The question is how much of this force is transmitted through the
joint between links 1 and 2. The naive answer to this question is to take the component ZT F 2 along the joint
axis, and subtract it from F 2. The physical answer is as follows:

• F 2 generates a torque ZT F 2 about the joint axis.

• ZT M2Z is the inertia of link 2 about the joint axis.

• (ZT M2Z)−1 is the corresponding acceleration generated by a unit torque about the joint axis.

• Z(ZT M2Z)−1ZT F 2 is the acceleration of link 2 caused by F 2.

• This acceleration generates a six-dimensional force M2Z(ZT M2Z)−1ZT F 2.

And this force is different from ZT F 2: the mass of link 2 is in general not symmetrically distributed about the
joint axis, such that an acceleration about the joint axis generates forces in all other directions too. The part F 1

of the force F 2 transmitted in inward direction to link 1 is then:

F 1 = F 2 − M2Z(ZT M2Z)−1ZT F 2, (10.28)

= P in
2 F 2. (10.29)

Parametric uncertainty. The above-mentioned projections of forces, accelerations and inertias through a joint
make use of the position and orientation parameters of the joint, as well as of the mass matrix of the links. As
before, these parameters should be assumed to be uncertain, and hence are to be estimated and or adapted by
the robot controller.

10.7 Link-to-link recursions

The dynamics algorithms for serial and humanoid robots can achieve linear-time complexity, because they use
inward and outward recursions from link to link. These recursions propagate force, velocity, acceleration, and
inertia from the root to the leafs (outward recursion), or vice versa (inward recursion). After each recursion
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step towards link i, all physcial properties of interest are expressed in the proximal frame {pi} of that link. The
terminology “inward” and “outward” is unambiguous only for classical robot arms: their root is fixed in the
environment, and they have a well-defined end-effector on which forces are applied, or motion constraints are
acting. Humanoid robots, however, change their “fixed” root from one foot to the other when walking, and
sometimes they have none of their feet on the ground. A humanoid robot can climb (especially in outer space
where gravity is absent), such that one of its hands serves as the fixed root. And, as said already before, its
topology allows any of its link to be root of its tree structure.

The physical properties of the recursions of dynamic parameters have already been discussed in the previous
Sections; this Section basically adds only the somewhat involved “bookkeeping” of all coordinate representations
involved in the recursions between different frames. Every recursion typically consists of three steps: for example,
an outward recursion from link i to link i+1 first performs a coordinate transformation of the physical properties
from the proximal frame {pi} of link i to its distal frame {di+1}; there the contribution of the joint qi+1 (position,
velocity, . . . ) is taken into account; and the result is propagated to the proximal frame {pi+1} of the next link
i+1. Of course, for efficiency reasons, linear-time algorithms try to keep these three steps as efficient as possible.
That is the reason to choose coinciding proximal and distal frames on subsequent links.

10.7.1 Outward position recursion

This has already been discussed in the Kinematics chapter: the position and orientation of the end-effector frame
are found from the measured joint angles by a multiplication of homogeneous transformation matrices that depend
on the kinematic parameters of the robot.

10.7.2 Outward velocity recursion

The velocity recursion finds the linear and angular velocity Ẋi+1 = (vi+1,ωi+1) of the proximal frame {pi+1} on
link i + 1, given the linear and angular velocity Ẋi = (vi,ωi) of the proximal frame {pi} on link i, and given the
joint angle speed q̇i+1 between both links. Because both links move only with respect to each other by a rotation
about zdi+1

= zpi+1
, the following recursion equations are obvious:

vi+1 = vi + ωi × ri,i+1, (10.30)

ωi+1 = ωi + q̇i+1zdi+1
. (10.31)

with ri,i+1 the vector between the origins of the frames {i} and {i + 1}, i.e., ri,i+1 = ri+1 − ri. In coordinate

form, the recursion Ẋi → Ẋi+1 becomes:

Ẋi+1 = T
V
di+1,pi+1

(
T

V
pi,di+1

Ẋi + q̇i+1Zdi+1

)
, with Zdi+1

=

(
03×1

zdi+1

)
. (10.32)

T
V
pi,di+1

is the 6 × 6 velocity transformation matrix, Eq. (10.8), from the proximal to the distal frame on link i,

and T
V
di+1,pi+1

transforms the velocities further to the proximal frame of the distal link. This last transformation
is very simple, because the origins and the Z axes of both frames coincide.

10.7.3 Outward acceleration recursion

This recursion calculates the linear and angular acceleration Ẍi+1 = (v̇i+1, ω̇i+1) of {pi+1}, given the linear and
angular acceleration Ẍi = (v̇i, ω̇i) of {pi}, and given the joint angle acceleration q̈i+1. The recursion equations
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are found straightforwardly by taking the time derivative of the velocity recursion in Eq. (10.32):

v̈i+1 = v̇i + ω̇i × ri,i+1 + ωi × (ωi × ri,i+1), (10.33)

ω̇i+1 = ω̇i + q̈i+1zdi+1
+ ωi × q̇i+1zdi+1

. (10.34)

This uses the property that ωi × x is the time derivative of a vector x that is fixed to a body that rotates with
an angular velocity ωi. In coordinate form, the recursion Ẍi → Ẍi+1 becomes:

Ẍi+1 = T
V
di+1,pi+1

(
T

V
pi,di+1

Ẍi + q̈i+1Zdi+1
+ Ai+1

)
, with Ai+1 =

(
ωi × (ωi × ri,i+1)

ωi × q̇i+1zdi+1

)
. (10.35)

This acceleration recursion is identical to the velocity recursion of Eq. (10.32), except for the bias acceleration
Ai+1 due to the non-vanishing angular velocity ωi.

10.7.4 Inward articulated mass recursion

The inward articulated mass matrix recursion calculates the articulated mass Ma
i of the proximal and distal

links together, expressed in the proximal frame {pi} of the proximal link i, when the articulated mass Ma
i+1

of the distal link i + 1 is already known (expressed in its own proximal frame), as well as the mass matrix M i

of the proximal link (expressed in its proximal frame). Section 10.6.1 explained already how the mass matrix
is transmitted through the revolute joint, Eq. (10.25). Hence, the coordinate form of the inward recursion
Ma

i ← Ma
i+1 becomes:

Ma
i = M i + T

F
i,i+1

{
P in

i+1M
a
i+1

} (
T

F
i,i+1

)T

. (10.36)

Ma
i is an operator working on the acceleration of link i, so, interpreted from right to left, one recognizes the

following steps: (i) (T F
i,i+1)

T = (T V
i,i+1)

−1 transforms the coordinates of the acceleration to frame {pi+1}; (ii)

there it works on the part P in
i+1M

a
i+1 of the articulated mass matrix of link i + 1, and generates a force; and (iii)

T
F
i,i+1 transforms the coordinates of this force back to link {pi+1}. Note that (i) this recursion maintains the

symmetry of the articulated mass matrix, and (ii) the force projection operator P in
i+1 uses the articulated mass

matrix of link i + 1, not its unconstrained mass matrix.

10.7.5 Inward force recursion

This section explains the recursion from F i+1, the total force felt by link i + 1 at its proximal frame {pi+1}, to
F i, the total force felt by link i at its proximal frame {pi}. F i consists of two parts:

1. Contributions from link i + 1:

(a) The accumulated resultant total force F i+1.

(b) The inertial force generated by the product of (i) the bias acceleration Ai+1 of link i+1, Eq. (10.35) resulting
from the angular velocity of link i, and (ii) the articulated mass matrix Ma

i+1 of link i + 1.

(c) The joint torque τi+1.

The sum of these forces is transmitted from link i + 1 to link i, but only in part, due to the existence of the
motion degree of freedom at the joint. The transmitted part of these force correspond to the transmitted force
calculated in Eq. (10.29).

170



2. Contributions from link i:

(a) The velocity-dependent bias force F b
i , generated by the angular velocity and the mass properties of link i,

Eq. (10.12).

(b) The “external force” F e
i , i.e., the resultant of all forces applied to link i, for example by people or objects

pushing against it.

In coordinates, the recursion F i ← F i+1 becomes:

F i = T
F
i,i+1 P in

i+1 F i+1
i+1 + F b

i + F e
i , (10.37)

with F i+1
i+1 = F i+1 + Ma

i+1A
b
i+1 − τi+1Zi+1. (10.38)

The minus sign for the joint torque contribution comes from the fact that link i feels a torque −τi+1Zi+1 if the
motor at joint i + 1 applies a torque of +τi+1 units. This recursion can be slightly simplified: the joint torque
vector τi+1Zi+1 need not be constructed, because it gets operated on by the ZT in P in

i+1, Eq. (10.23), which
results in τi+1 again.

10.8 Dynamics of serial arm

This Section applies the material of all previous Sections to construct linear-time algorithms for the forward and
inverse dynamics of a serial robot arm. The algorithms are valid for arms with an arbitrary number of joints.

10.8.1 Inverse dynamics of serial arm

The acceleration of the end-effector link is specified by the user. For simplicity, assume that this end-effector
acceleration has been transformed already into joint angle accelerations. (For robots with less or more than
six joints, this transformation can be non-trivial and/or non-unique.) The joint torques needed to achieve this
acceleration are then calculated as follows:

1. Outward motion recursion. Position, velocity, and bias acceleration due to angular velocities. The recursion is
initialized with the position and velocity of the base.

2. Inward articulated mass matrix recursion. Initialized by Ma
N = 0 for the end-effector link (which has number

“N”).

3. Inward force recursion. While performing this recursion, the joint torques τi in Eq. (10.37) are put to zero; the
result of the recursion is the total load τ l

i to be generated by the ith joint torque:

τ l
i = ZT

i (F b
i + Ma

i Ẍ
b

i ). (10.39)

The acceleration Ẍi−1 generated by the previous joint is not yet known at this stage of the ID algorithm.

4. Outward joint torque recursion:

τi = ZT
i

(
F b

i + Ma
i (Ẍ

b

i + Ẍi−1)
)

. (10.40)

This recursion uses the forward acceleration recursion, to calculate Ẍi−1.
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10.8.2 Forward dynamics

The acceleration generated by given joint torques can be found as soon as each joint knows which (articulated)
mass it has to accelerate, and what external forces it has to withstand. The following scheme achieves this goal:

1. Outward motion recursion. Same as for ID.

2. Inward articulated mass matrix recursion. Same as for ID.

3. Inward force recursion. This recursion calculates the influence of inertial and external forces on each link,
Eq. (10.37), starting with the end-effector link.

4. Outward acceleration recursion. The first joint now knows what (articulated) mass is attached to it, as well as
all forces working on it (except for the joint torques), such that the acceleration generated by the joint torque
τ1 can be calculated; this acceleration is then used to find the bias acceleration for the second joint, and so on.
The corresponding forward recursion of the joint acceleration is

q̈i = (ZT
i Ma

i Zi)
−1

{
τi − ZT

i

(
F b

i + Ma
i (Ẍ

b

i + Ẍi−1)
)}

. (10.41)

Equation (10.35) gave already the corresponding outward recursion for the spatial accelerations Ẍi. Gravity
is taken into account by initializing the recursion with the gravitational acceleration: Ẍ0 = g.

5. Integration of joint accelerations. The details of numerical integration algorithms are not discussed in this text.

10.9 Analytical form of serial chain dynamics

The previous Sections presented recursive algorithms. This means that the relationship between joint forces τ

and joint accelerations q̈ (or end-effector acceleration Ẍ) is not made explicit. Such an explicit analytical form
of the dynamics would be very inefficient to calculate, since many terms are repeated. Nevertheless, an analytical
form is interesting because it gives more insight: Are all relationships nonlinear, or do some relationships exhibit
linear behaviour? What terms are important, and what others can be neglected in specific cases?

A closer inspection of the recursion relations reveals a general analytical form for the dynamics: the ac-
celerations enter linearly in the dynamic equations; the velocities enter non-linearly due to the bias forces and
accelerations; the influence of the gravity enters linearly. (These linearities will be very helpful to limit the com-
plexity of estimation algorithms for the dynamic parameters of the robot.) Hence, the relationship between the
joint forces τ , joint positions q, joint velocities q̇, and joint accelerations q̈ of a serial kinematic chain is of the
following analytical form:

τ = M(q) q̈ + c(q̇, q) + g(q). (10.42)

The matrix M(q) is called the joint space mass matrix. The vector c(q̇, q) is the vector of Coriolis and centrifugal
joint forces. Some references write the vector c(q̇, q) as the product of a matrix C(q, q̇) and the vector q̇ of joint
velocities. The vector g(q) is the vector of gravitational joint forces. In component form, Eq. (10.42) becomes

τi =
∑

j

M ij(q) q̈j +
∑

j,k

Cijk(q) q̇j q̇k + gi(q). (10.43)

The joint gravity vector g(q) gives the joint forces needed to keep the robot in static equilibrium (q̇ = q̈ = 0)
under influence of gravity alone. The Coriolis and centrifugal vector gives the joint forces needed to keep the
robot moving without acceleration or deceleration of the joints.
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Joint space mass matrix. The joint space mass matrix M(q) gives the linear relationship between the joint
forces and the resulting joint acceleration, if the robot is in rest, and if gravity is not taken into account. Hence,
the physical meaning of M is that the ith column M i(q) is the vector of joint forces needed to give a unit
acceleration to joint i while keeping all other joints at rest (and after compensation for gravity).

It can be proven that the instantaneous kinetic energy T of the robot is given by

T = q̇T M(q)q̇. (10.44)

This has the same form as the expression T = 1
2mv2 for the kinetic energy of a point mass m moving with a

velocity v.

10.10 Euler-Lagrange approach

The previous Sections started from Newton’s law of motion to describe the dynamics of serial chains of rigid
bodies. This approach is often called the Newton-Euler algorithm, and it uses the Cartesian velocities of all links
in the chain, and the Cartesian forces exerted on all links. This involves a non-minimal number of variables, since
each link has only one degree of freedom with respect to its neighbours, while the Cartesian velocities and forces
for each link are six-vectors.

Another approach exists (the so-called Euler-Lagrange approach) that uses a minimal number of variables
to describe the same dynamics. These independent variables are called generalised coordinates, [20]. In general,
the minimal set of generalised coordinates might consist of coordinates that are not straightforwardly connected
to the physical features of the system. However, for serial robots, the joint positions q are natural generalised
coordinates for the position of the robot. The joint forces τ are the corresponding generalised forces. The
generalised velocities and accelerations of the system are simply the time derivatives of the joint coordinates,
so no new independent variables are needed to describe the system’s dynamics. Instead of Newton’s laws, the
Euler-Lagrange approach uses Hamilton’s Principle (1834) as a starting point: A dynamical system evolves in
time along the trajectory, from instant t1 to instant t2, that makes the action integral

I =

∫ t2

t1

L dt (10.45)

reach an extremal value (i.e., a local minimum or maximum), [14, 15, 22, 25, 28, 31, 32].
A problem of this kind is called a variational problem. The integrand L is called the Lagrangian of the

dynamical system. Hamilton’s Principle is very general, and applies to many more cases than just a robotic
system of masses moving under the influence of forces, as considered in this text. For this latter case, the
Lagrangian L is equal to the difference of the kinetic energy T of the system, and the potential energy V :

L = T − V. (10.46)

If forces that cannot be derived from a potential function (so-called non-conservative forces, such as joint torques,
or friction) act on the system, then the Lagrangian is extended with one more energy term W , i.e., the work done
by these forces:

L = T − V + W. (10.47)

William Rowan Hamilton’s (1805–1865) Principle was the end-point of a long search for “minimal principles,”
that started with Fermat’s Principle of Least Time (Pierre de Fermat (1601–1665), [7]) in optics, and Maupertuis’
Principle of Least Action (Pierre Louis Moreau de Maupertuis (1698–1759), [8, 9]). The precise contents of the
word “action” changed over time (Lagrange, for example, used the product of distance and momentum as the
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“action”, [20]) until Hamilton revived the concept, and gave it the meaning it still has today, i.e., the product of
energy and time.

This paragraph explains how one should interpret Hamilton’s principle in the context of robot motion. Assume
some forces act on the robot: gravity, joint forces, external forces on the end-effector or directly on intermediate
links of the robot. The robot will perform a certain motion from time instant t1 to time instant t2 > t1. This
trajectory is fully deterministic if all parameters are known: the robot’s kinematics, the mass matrices of all
links, the applied forces, the instantaneous motion. This trajectory is “extremal” in the following sense: consider
any alternative trajectory with the same start and end-point, for which (i) the same points are reached at the
same start and end instants t1 and t2, (ii) the trajectory in between can deviate from, but remains “in the
neighbourhood” of, the physical trajectory, and (iii) the same forces act on the robot. Then, the action integral
(10.45) for the physically executed path is smaller than the action integral for any of the alternative paths in the
neighbourhood.

Hamilton’s principle is an axiom, i.e., it is stated as a fundamental physical principle, at the same footing
as, for example, Newton’s laws, or, in a different area of physics, the laws of thermodynamics. Hence, it was
never derived from more fundamental principles. What can be proven is that different principles turn out to be
equivalent, i.e., they lead to the same results. This is, for example, what Silver [29], did for the Newton-Euler
approach of the previous Sections, and the Euler-Lagrange approach of this Section. The validity of Newton’s
laws and Hamilton’s Principle as basic physical principles is corroborated by the fact that they gave the correct
answers in all cases they could be applied to. From this “evidence” on a sample of characteristic problems, one
has then induced their general validity to a whole field of physics. This means that these principles remain “valid”
until refuted. Probably the two most famous refutations in the history of science are Copernicus’ heliocentric
model (refuting the geocentric model), and Einstein’s Principles of Relativity (that replace Newton’s laws at
speeds close to the speed of light, or for physics at a cosmological scale.)

The interpretation of Hamilton’s principle above assumed that one knows the physically executed path. How-
ever, in practice, this is exactly what one is looking for. So, how can Hamilton’s principle help us to find that
path? Well, the Swiss mathematician Leonhard Euler proved that the solution to the kind of variational problem
that Hamilton used in his Principle, leads to a set of partial differential equations on the Lagrangian function,
[10]. This transformation by Euler is valid independently of the fact whether or not one really knows the solution.
Although Euler applied his method only to the particular case of a single particle, his solution approach is much
more general, and is valid for the context of serial robot dynamics. Euler’s results are also much more practical
to work with than Hamilton’s principle, since it reduces finding the physical trajectory to solving a set of partial
differential equations (PDEs) with boundary conditions that correspond to the state of the system at times t1
and t2. So, in practice one starts from Euler’s PDEs as “most fundamental” principle, instead of starting from
Hamilton’s principle.

The name of the French mathematician and astronomer Joseph Louis Lagrange (1736–1813) is connected to
the method described in this Section because he was the first to apply the “principle of least action” to general
dynamical systems. The equations of motion he derived for a system of rigid bodies are exactly Euler’s PDEs,
applied to mechanics. Euler’s and Lagrange’s contributions in the area of dynamics of point masses or rigid bodies
date from more than half a century before Hamilton stated his Principle. However, Hamilton’s Principle is more
general than the dynamics that Euler and Lagrange considered in their work.

This Section on the Euler-Lagrange approach is much shorter than the Section on the Newton-Euler approach.
This does not mean that the Euler-Lagrange approach is simpler or more practical; its shorter length is a mere
consequence of the fact that most of the necessary material has already been introduced in the Newton-Euler
Section, such as, for example, the expressions for the kinetic and potential energy of serial robots. The following
paragraph will just describe how the well-known dynamical equations of Lagrange are derived from (i) Hamilton’s
Principle, and (ii) the Euler differential equations that solve the variational problem associated with the action
integral.
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10.10.1 Euler-Lagrange equations

This Section derives the Euler-Lagrange equations that describe the dynamics of a serial robot. We start from
Hamilton’s Principle, and apply Euler’s solution approach to it. This derivation can be found in most classical
textbooks on physics, e.g., [6, 12, 13, 28]. Assume that the extremum value of the action integral is given by

I =

∫ t2

t1

L(q, q̇, t) dt, (10.48)

with L = T−V the desired Lagrangian function we are looking for. L is a function of the n generalised coordinates
q = (q1, . . . , qn), and their time derivatives. Both q and q̇ depend on the time. A variation of this integral is a
function of the following form:

Φ(ǫ) =

∫ t2

t1

L(q + ǫT r, q̇ + ǫT ṙ, t) dt, (10.49)

with ǫ a vector of real numbers, and r a set of real functions of time that vanish at t1 and t2. Note that Φ
is considered as a function of the epsilons, not of the generalised coordinates. Hence, this variation Φ(ǫ) is a
function that can approximate arbitrarily close the extremum L we are looking for if the epsilons are made small
enough. Now, this function Φ(ǫ) should reach an extremal value (corresponding to the extremal value of the
action integral) for all ǫi = 0. Hence, Φ’s partial derivatives with respect to the ǫi should vanish at the values
ǫ1 = · · · = ǫn = 0. Hence, also the following identity will be fulfilled:

0 = ǫ1

(
∂Φ

∂ǫ1

)

ǫ1=0

+ ǫ2

(
∂Φ

∂ǫ2

)

ǫ2=0

+ · · · + ǫn

(
∂Φ

∂ǫn

)

ǫn=0

(10.50)

=

∫ t2

t1

(
ǫ1

(
∂L
∂q1

r1 +
∂L
∂q̇1

ṙ1

)
+ ǫ2

(
∂L
∂q2

r2 +
∂L
∂q̇2

ṙ2

)
+ · · · + ǫn

(
∂L
∂qn

rn +
∂L
∂q̇n

ṙn

))
dt. (10.51)

The right-hand side is called the first variation of Φ, because it is formally similar to the first order approximation
of a “normal” function, i.e., the first term in the function’s Taylor series. Partial integration on the factors
multiplying each of the ǫi gives
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∫ t2

t1

ri

(
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− d

dt

∂L
∂q̇i

)
dt. (10.52)

The evaluation at the boundaries t1 and t2 vanishes, by definition of the functions ri. Moreover, these functions
are arbitrary, and hence the extremal value of the variation is reached when each of the factors multiplying
these functions ri becomes zero. This gives the Euler-Lagrangian equations for an unforced system (i.e., without
external forces acting on it):

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0, i = 1, . . . , n, or, in vector form,
d

dt

∂L
∂q̇

− ∂L
∂q

= 0. (10.53)

10.11 Newton-Euler vs. Euler-Lagrange

Since both the Newton-Euler approach and the Euler-Lagrange approach discuss the same physical problem, they
must be equivalent, [29]. So, why would one prefer one method to the other? This question doesn’t have a unique
answer, since this answer depends on the context and the envisaged application. However, some general remarks
can be made:
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• Recursive Euler-Lagrange algorithms have been developed, such that the historical objection against using the
Euler-Lagrange approach because of efficiency reasons has lost much (although not everthing) of its initial
motivation.

• Hamilton’s Principle is clearly independent of the mathematical representation used, hence the Euler-Lagrange
equations derived from it are (by construction) invariant under any change of mathematical representation.

• The Newton-Euler method starts from the dynamics of all individual parts of the system; the Euler-Lagrange
method starts from the kinetic and potential energy of the total system. Hence, the Euler-Lagrange approach
is easier to extend to systems with infinite degrees of freedom, such as in fluid mechanics, or for robots with
flexible links.

• The Newton-Euler method looks at the instantaneous or infinitesimal aspects of the motion; the Euler-Lagrange
method considers the states of the system during a finite time interval. In other words, the Newton-Euler
approach is differential in nature, the Euler-Lagrange approach is an integral method, [32].

• The Newton-Euler method uses vector quantities (Cartesian velocities and forces), while the Euler-Lagrange
method works with scalar quantities (energies).
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Chapter 11

Motion planning

11.1 Introduction

Robots move things around (including themselves as in the case of mobile robots), create changes in the environ-
ment using their tools (grippers, welding guns or torches, paint pistols, etc.) or inspect the environment by means
of sensors attached to their end-effectors. All these tasks have one thing in common: the robot is commanded to
move to a sequence of desired positions and orientations in space. Often the user is also explicitly interested in
how the robot gets there: he might want the robot to move through some specified via-points (taught manually,
or generated by off-line or on-line task planners) with a prescribed speed, to follow a surface in the environment
(making contact with this surface, or following it at a prescribed distance), or to optimise some performance
criterions (minimum time, minimum distance, minimum energy consumption, avoidance of actuator saturation,
minimum excitation of the robot’s natural frequencies, avoidance of obstacles, etc.).

Fact-to-Remember 63 (Basic ideas of this Chapter)
This Chapter introduces some fundamental ideas in planning. Some methods are discrete,
others are analytical. “Discrete” often means “faster,” “less accurate,” and “sub-optimal.”
Most discrete approaches use the concept of configuration space (also called C-space).

No really standardised terminology exists about what exactly is understood under the terms motion, path or task :

Task Examples are: assemble a video recorder; drive from street “A” in town “Aa” to street “B” in town “Ba”;
paint a workpiece; etc. In general, a task consists of a (large) number of more primitive subtasks, each of which
requires the robot to perform an action that can be specified (i.e., fully described) by one single “command.”
Each of these commands describes a certain path that the robot has to follow, as well as with what speeds it
has to move along that path.

Path A (continuous) set of positions and orientations that the robot has to move through. Roughly speaking,
the path contains geometric information only.

Typically, initial, intermediate and final poses and/or motion directions are given, and the path planner must
link both poses in a continuous and “optimal” way.

Motion Instantaneous information about with what velocity the robot has to move along a given geometrical
path, or based on instantaneous sensor information. The “large” distance between the start and end poses is
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subdivided in a lot of “infinitesimally separated” poses, which are generated at a pace synchronised with the
robot’s motion controller. The conversion of a geometric path into instantaneous motion commands is often
called motion interpolation, or trajectory generation.

The difference between path and motion planning is not always really clear. Fargoing similarities exist with
computer graphics and animation: in these fields, the artist creates “key frames” for all moving objects in the
scene (i.e., a set of intermediate positions and orientations) and lets the computer interpolate between these key
frames to generate “naturally looking” motions.

This Chapter does not discuss the planning of why the subgoal poses are needed, and how they are to be
sequenced in order to execute a complete task. This task planning problem is difficult, to say the least, and
no general body of solution techniques exists yet since task planning is so much task-dependent and (especially)
requires levels of creativity that cannot be achieved by even the most advanced current-day software. Planning is
indeed not an exact science, in the sense that no general “planning laws” exist to guide or constrain the planning
activity. Hence, numerous “common sense” approaches have been developed. The first Section in this Chapter
discusses the major trade-offs underlying this common sense. Different planning papers emphasize different
aspects in these trade-offs; the results is a enormous amount of different planning approaches. The other Sections
only present some of the most popular techniques in (a little bit) more detail.

11.2 Major trade-offs in planning

One can almost never find “the” best motion specification, either because it just doesn’t exist (recall for example
the arbitrariness existing in the definition of the distance between two poses), or because it costs too much to find
it (for example, what would be the most optimal way to assemble an airplane?). Hence, all planning algorithms
emphasize one or more sub-aspects of the problem. The following Sections highlight some of the most common
trade-offs related to this focussing on sub-aspects.

11.2.1 Polynomial vs. non-polynomial trajectories

Polynomial functions interpolating between goal positions seem, at first sight, a natural approach to describe
spatial robot trajectories. But one has to keep in mind that polynomials interpolating many via-points become,
in general, very oscillatory, [51]. Hence, one more often uses “spline-like” approaches, in which locally defined
path segments are glued together while obeying continuity constraints on position, velocity, acceleration, and/or
jerk. (Jerk is the time derivative of acceleration.) The simplest approach is to use straight lines connected by
smooth transition curves, [41, 50]; solutions for these transition curves are illustrated in many of the following
Sections. During the transition, the path might deviate from the nominally specified trajectory when priority is
given to making the transition smooth, not to making it pass exactly through the via-points or be tangent to the
path at the via-points up to a certain order in a prescribed way.

11.2.2 Joint space vs. Cartesian space

The simplest approach to trajectory generation uses interpolation in joint space: the joint angle vectors corre-
sponding to the start and end poses of the robot are calculated, and joint space trajectories between both are
generated. This problem is much simpler than a full Cartesian space interpolation, for the following reasons:

1. Eventually, every motion specification is translated in a stream of desired joint motions. Chapter 7 already
made clear that the transformation from Cartesian motion parameters into joint space motion parameters is
not always uniquely defined. Moreover, most real robot joints have mechanical limits, that should be taken
into account by the motion planner. Both of these problems are easier to solve in joint space.
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2. Near singularities of the robot, the transformation from Cartesian to joint space motion parameters breaks
down. Recall that no singularities (except mechanical limits) exist for paths defined in joint space.

3. A general Cartesian motion planner is confronted with the fact that no bi-invariant metric exists for the motion
parameters of rigid bodies (Chap. 3). This means that the results possibly depend on the reference frames
chosen on the robot’s base and end-effector.

4. It might well be that parts of a desired Cartesian path do not belong to the workspace of the robot, but that
this cannot be predicted from knowing only the initial and final Cartesian poses. This problem can be coped
with easily in joint space.

Fact-to-Remember 64 (Joint space interpolation)
Roughly speaking, joint space interpolation reduces a six-dimensional, coupled motion plan-
ning problem to n one-dimensional, uncoupled problems, n being the number of joints in
the robot.

(The user could decide to (slightly) couple these n one-dimensional problems if he requires the motions for all
n joints to take exactly the same amount of time.) The major drawback of joint space interpolation is the
unpredictability of the resulting motion: since the transformation from joint space to Cartesian space is highly
nonlinear. For example, it is difficult to guarantee collision-free Cartesian paths by using a joint space interpolator.

11.2.3 Sensor-based vs. sensor-less

Most of the planning literature deals with sensor-less approaches: a plan is generated off-line, and no provision is
made to take sensor inputs into account during execution. This is the major reason why this literature is of not
much use for “intelligent robots,” that, by the nature of their tasks, need their sensors constantly. The sensor-less
planning literature is useful for industrial applications, where the robots, its tools and its environment are well
under control.

11.2.4 Model-based vs. model-free

Planning can, almost by definition, only take place in a context where a model of the robot and its environment
is available. However, a rich literature exists on model-free planning, which is also called reactive planning since
it typically boils down to giving the robot controller a set of rules that dictate how it should react to its sensor
readings. Reactive plans are popular in collision avoidance. This text emphasized model-based planning only.

11.2.5 Local vs. global

Some planning techniques discuss local planning only: how should the robot move at the next instant in time, in
order to move “in the direction” of the final goal. The redundancy resolution techniques based on the extended
Jacobian (Sect. 7.14.2) are examples of locally optimal algorithms. Most mobile robot path planners have some
global planning module available: it determines the route to follow, given a map of the world.

11.2.6 Robustness vs. time optimality

In many applications the robot programmer is most concerned about the spatial poses that the robot will move
through, and less with at what time instants exactly the robot traverses the different intermediate poses generated
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by the trajectory planning algorithm. For example, if one wants a mobile robot to find its way through the
corridors of a large building, one puts generally more emphasis on the fact whether or not the robot can reach
its goal without collisions, than on the fact whether or not it could have done it a minute or two faster.

11.2.7 Velocity vs. acceleration vs. jerk constraints

All real-world robots are moved by actuators that can produce only limited torques. Hence, the trajectory
planner for the robot should not generate motions that require torques beyond these limits. If no dynamic model
for the robot is available, however, one cannot calculate the joint torques required for the motion; in this case,
it is common practice to replace the joint torque limits by (conservative) limits on the velocity, the acceleration,
and/or the jerk. Constraints on first-order or higher-order derivatives of the position require more complicated
algorithms on the one hand, but can produce smoother motions on the other hand. The “optimum” in this
trade-off cannot be defined straightforwardly .

The smoothness of the path is very important for mobile robots in order to avoid slipping of the wheels. For
serial and parallel robots, smoothness is important because fastly changing or discontinuous acceleration and/or
jerk increase the chance to excite the robot’s or the tool’s natural frequencies. This excitation has always a
negative influence on the end-effector position of the robot; moreover, if these oscillations cannot be controlled,
damage could be caused to the robot, its tools, or the environment. Serial and parallel manipulators cannot slip,
so they are more robust against unsmooth trajectories. “Robust” in this context means that they can at least
measure the deviations generated by unsmooth trajectories, except for the deviation components due to flexibility
of joints and links.

Note that “smoothness” is not equivalent to “minimal excitation of natural freqencies”: indeed, a perfect sine
function with high frequency is infinitely smooth, but is very likely to excite the natural frequencies. Hence,
smoothness is only part of the picture: the variation of the motion profile must also be maximally “bounded”,
i.e., its magnitude must remain small with respect to a given norm. As remarked already many times before
in this text, no such natural norm exists for rigid body motions. On the other hand, it is unpractical to take
all higher-order derivatives of the motion into account. Hence, a reasonable trade-off is to limit oneself to the
acceleration or jerk levels.

11.2.8 Performance optimization vs. programming optimization

Even if the user possesses all data necessary to, for example, optimise the energy comsumption of the motion
by using the complete dynamic model of the robot, he might opt for a programming approach that generates
a trajectory that is less optimal during execution but that takes much less time to specify. Some commonly
applied programming simplifications are: (i) decomposition of the Cartesian path into decoupled translation
and orientation interpolation problems, (ii) specification of conservative limits on the allowable velocities and
accelerations, instead of calculating them exactly from the dynamics of the robot, and (iii) manual teaching of
via-points instead of optimization of these via-points on an off-line robot simulation system.

11.2.9 Object motion planning vs. robot motion planning

Much research in robotics focusses on the creation of plans to move a rigid body amongst obstacles in its environ-
ment. (This part of motion planning is particularly popular with computer science people working in robotics,
since they often don’t have access to, or experience with, real robotic devices. . . ) This rigid body can be the
robot itself (e.g., a mobile robot) or a workpiece connected to a serial or parallel manipulator. This kind of
planning problem is often called the “piano movers problem,” since human furniture movers have been confronted
for centuries already with the difficulties of moving a grand piano out of a house. In robotics, one tries since about
two decades to solve this piano problem, and several related motion planning problems, in an automated way. In
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this area of motion planning, artificial intelligence techniques become more important and successful compared
to deterministic mathematical and physical methods. This text won’t discuss the techniques developed to solve
the piano movers problem, since these things are a bit out of the scope of the text. Some excellent introductions
to the set of solutions can be found in [17] and [26].

11.2.10 Approximate methods vs. accurate and complete methods

It is often preferred to get a solution fast, rather than waiting much longer for a solution that is more exact
or more optimal. This implies that many methods work with approximate, low-resolution models of the robot
and its environment. For example, all objects are represented by rectangles or spheres. Such approximations
inevitably lead to incomplete solutions from time to time, e.g., when planning the motion of a mobile robot
amongst obstacles, an approximate method could possibly not find a solution because it underestimates the
available free space.

11.3 Simple interpolation

This Section describes some of the simplest (hence most common) techniques to interpolate a motion from an
initial pose to a final pose with zero velocity at both ends of the motion. The simplicity is mainly due to the fact
that one decomposes the, in general, six-dimensional problem in a set of independent one- or two-dimensional
subproblems, using straight line segments with easily calculatable time profiles. If one wants to pass through
or near a given set of via-points (without stopping!), the straight lines are blended together with smooth curves
(Sect. 11.3.2). The presented interpolation techniques are used in Cartesian space as well as in joint space, since
one just interpolates between coordinates without taking into account the geometric properties of the motion
represented by these coordinates. This means that the presented procedures are also applicable to mobile robots,
to make them start, stop, or change speed in a “smooth” way.

11.3.1 Point-to-point

This Section gives three methods to interpolate a one-dimensional motion, e.g., from a joint angle q0 to a joint
angle qT . T is the total time available to execute the motion. The result of the interpolation algorithms are the
numbers q(t), that give the desired value of the joint angle at time t, 0 6 t 6 T .

Trapezoidal velocity profile The simplest approach, [53, 56], starts from q0 with zero velocity; it then applies
a constant acceleration q̈ until a maximum velocity q̇max is reached; the motion continues with this velocity q̇max

until the deceleration phase starts, which applies a constant deceleration −q̈. The resulting velocity curve has
the form of a symmetric trapezium (Fig. 11.1). Possibly the trajectory is so short that the maximum velocity is
not reached; in this case, the trapezium degenerates into an isosceles triangle.

The major advantage of this technique is its simplicity; its major disadvantage is that it generates jumps in
the acceleration, which can cause oscillatory behaviour of the robot.

Polynomial profile In order to avoid the acceleration jumps of the trapezoidal velocity profile, one can apply
continuity constraints at the boundaries of the motion: the velocity, acceleration, jerk. . . have to vanish at the
boundaries. For example, requiring continuous jerk imposes four constraints at each of the boundaries, so that
at least a polynomial of the seventh degree has to be used. The drawback of this approach is that the form of the
joint angle trajectory is not predictable: it follows from the constraints. If one requires more freedom in choosing
the trajectory (e.g., by imposing intermediate points) the degree of the polynomial has to be increased, and hence
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Figure 11.1: Trapezoidal velocity profile for joint interpolation. tac and tdc denote the time intervals during which
the joint is linearly accelerated, respectively decelerated.

the oscillatory behaviour can increase too. Also, one can not have a priori knowledge about what the maximum
velocity or, more importantly, the maximum acceleration will be during the motion.

Continuous jerk profile Another approach to avoid the acceleration jumps of the trapezoidal velocity profile
starts from the observation that smooth motions require continuity in the jerk of the trajectory. Hence, the
motion is subdivided into segments with jerk profiles that start and stop with zero jerk, and that are continuous
in the jerk. One possible choice is to use halves of sinusoids, [51]; another possibility could be to use trapezoidal
jerk profiles. The major problem to be solved in these approaches is how to connect the available elementary jerk
profiles in order to achieve a desired motion.

These methods allow to impose maximum acceleration and deceleration on the motion (see [51] for more
details). This is an interesting feature, since acceleration is (more or less) proportional to the torque needed to
perform the acceleration (cf. the Newton-Euler equations!), and hence one could take into account the acceleration
bounds imposed by the dynamics of the robot and the characteristics of the actuators. Again, however, the final
shape of the joint angle trajectory is not fully predictable.

11.3.2 Via-points—Blending

If one does not want the robot to stop in the via-points, one needs a way to smoothly connect two subsequent
segments. The most common approach here (applicable to both joint space and Cartesian space interpolation) is
as follows, [41, 50, 56]:

1. One uses one of the previous methods to generate a smooth start, and to accelerate to a given maximum
velocity.

2. One continues with this constant velocity, i.e., a straight line in joint space or Cartesian space.

3. When one comes “close” to the next via-point, one applies an acceleration that makes a smooth transition from
the current straight line to the straight line between the next via-point and the one after that. For example,
by finding a parabolic segment tangent to both straight lines.

4. One smoothly decelerates the robot to a zero velocity at the end point.

183



time

q
T
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Figure 11.2: Blending of straight line segments in joint space. tacc is the window during which the acceleration
to, or deceleration from, a straight line segment takes place. T is the total time of the motion between two
consecutive via-points.

x

y xblxblxbl xbl
Figure 11.3: Blending (in Cartesian xy space) with more flexible user-specified parameters, [30]. xbl is the blending
preview window (in X direction!); cubic splines were used for the blending. The two transitions depicted in the
figure have been blended with different goals in mind: in the first transition, the accurate tracking of the first line
segment is given up for accurate tracking of the second line segment; the second and third line segment have to
be followed accurately (for example, in order to apply or remove material to a workpiece), hence the transition
between both cannot be done instantaneously and so the blending requires a “curl.”

Figure 11.2 illustrates the concepts; the “acceleration window” tacc is a user-defined parameter. Extensions of this
method, [30, 51], use (i) non-symmetric transition windows and more flexible blending parameters, in Cartesian as
well as in joint space (Fig. 11.3), (ii) non-linear segments, or (iii) continuous jerk profiles with non-zero velocities
at the via-points (and hence, of course, also guaranteeing continuity in velocity and acceleration).
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11.3.3 Tracking of small Cartesian errors

Sensor-based tracking is probably the simplest case of full Cartesian motion planning when the goal position and
orientation are not specified beforehand: the robot is sensing its environment (e.g., by means of a camera, a force
sensor, ultrasonic sensors, etc.) and tries to follow a particular feature in this environment (e.g., a visual marker,
a desired contact force, or a given distance to the environment) even when this feature is moving. Hence, the
tracking problem is mainly reduced to a continuous sequence of (i) sensing the new position and orientation of
the feature with respect to the robot (see Chap. 12), and (ii) generating a tracking velocity that must reduce the
“tracking error” between robot and feature. By the nature of this problem, the tracking error can be considered
to be small, i.e., in general it can be modelled as an infinitesimal displacement twist t∆. The simplest method to
generate a tracking velocity, or twist t, is to divide the tracking error displacement twist t∆ by the sampling time
T s of the sensor system, and to use the robot’s inverse velocity kinematics to generate corrective joint velocities,
[55]:

q̇ = J−1
t = J−1 t∆

nT s
. (11.1)

This equation means that the estimated pose error t∆ will be brought to zero in a period corresponding to n
sample times T s. Of course, this direct method is subjected to all “excitations” that a nervous or slow sensing
system can introduce. From a control-theoretic point of view, it might be wiser to filter (or “smooth”) this raw
tracking velocity. Possible smoothing approaches are given in [8] and [30].

For mobile robots, a similar approach is often used, even though the “inverse velocity kinematics” are not
defined. The method followed in this case is to have the user define an “inverse Jacobian” mapping from the
Cartesian position and heading error to the velocities of the mobile robot’s wheels, [16, 48]. This 2 × 3 inverse
Jacobian depends, in general, on a number of arbitrary choices, i.e., the user has to make a particular trade-off
between decreasing errors in X position, in Y position, and in heading.

11.3.4 Screw motion paths

Chasles’s Theorem (Chap. 3) suggests another simple method to transform Cartesian pose “errors” into Cartesian
twists, [42, 55], but now for finite pose errors: in the context of motion planning, this theorem says that any
pose error can be annihilated by a certain translation along the screw axis, combined by a rotation about that
screw axis. (Recall that rotation and translation commute only on the screw axis!) Hence, a possible screw
motion trajectory is generated by applying one of the above-mentioned one-dimensional interpolators to the two
geometric parameters that determine the pose error: the error distance along the screw axis, and the equivalent
rotation angle about the screw axis.

The drawback of this method is that the resulting Cartesian trajectory is not very intuitive and hence hardly
predictable. Especially for serial and parallel robots, this can often lead to collisions with either the environment
or with the links of the robot itself.

11.3.5 Decoupled position and orientation interpolation

In order to avoid the problem mentioned in the previous paragraph, people have been looking for trajectories in
which translation and rotation are separated in intuitive, predictable ways:

Translation. A chosen reference point on the robot can always be moved along a straight line from its initial
to its final position. Possible collisions can be avoided by using multiple straight line segments around the
obstacle. Hence, the linear interpolation techniques used in joint space are straightforwardly generalised to
the translational motion planning for the robot’s end-effector. The result is independent of the mathematical
representation used to describe positions.
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Rotation. Angular motion, however, requires a more careful treatment, due to the specific mathematical prob-
lems of the different possible representations (Euler angles, rotation matrix, unit quaternions, etc.) and the
fact that orientations do not have a Euclidean metric (i.e., following “straight lines” in orientation space can
make the robot end-effector perform very counterintuitive trajectories).

The following paragraphs give an overview of some of the problems of orientation interpolation, as well as methods
for their solution. Combining these separate translation and rotation interpolators results always in trajectories
that depend on the choice of reference point on the robot! Nevertheless, these results can be very satisfactory,
since they are often quite intuitive.

Interpolation between line directions

From Section 4.3, we know that the shortest distance between two directions (i.e., between two intersecting lines)
is the distance along the great arc through both directions and with its centre at their point of intersection. Hence,
interpolation is straightforward: use one of the presented one-dimensional interpolators on the angle between both
directions.

Interpolation between frame orientations

From Section 5.4.5, we know that the shortest distance between two frames (represented, for example, by two

rotation matrices R1 and R2) is the equivalent angle of rotation of the relative orientation R =
(
R1

)−1
R2.

Again, the classical one-dimensional joint space interpolators can be applied to this angle. Other approaches
often interpolate each of the three Euler angles. However, this has several drawbacks:

1. This interpolation gives singularity problems: at the singularities of the Euler angle representation, infinite
angle rates can occur, [1].

2. The generated trajectory depends on the chosen set of Euler angles.

3. The generated motion is often very counterintuitive.

Decoupled orientation interpolation

Richard Paul [41] developed an orientation interpolation technique that is very intuitive for most industrial
manipulators: the change in orientation for the 3R wrist of a wrist-partitioned robot is decoupled in

1. A change in the first two wrist joint angles. This corresponds to the interpolation of two directions: the initial
and final direction of the last joint axis. The previous Section gave an intuitive solution for this.

2. A change of the last joint angle, i.e., a rotation of the tool about the direction of the last joint axis.

The resulting trajectory is rather straightforward to predict intuitively: the tool will move along a great circle
(combined of course with the translational motion of the end-effector) while at the same time rotating about the
last joint axis, which coincides with the normal direction to the sphere on which this great circle lies. A similar
“rotation minimizing motion” is described in [18].
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11.4 Paths with geometric constraints—Potential fields

Many of the methods discussed in this Chapter are “free space” methods: it is tacitly assumed that the robot
will not collide with the environment (or with itself) during the execution of the planned trajectory. So, other
techniques had to be developed to cope with obstacles in the robot’s workspace. Probably the most popular
method is based on so-called (artificial) potential fields, [23, 24, 36, 45, 37, 43, 46]. The basic ideas behind this
approach are:

1. Each obstacle to be avoided by the robot exerts an (artificial) repelling force on the robot.

2. The goal to be reached by the robot exerts an (equally artificial) attractive force on the robot.

3. These repelling and attractive forces are assumed to be deriveable from a conservative potential field, i.e., the
change in the potential energy of the robot in the artificial potential field is proportional to the force exerted
on the robot.

4. The motion of the robot is found by following the potential field “downstream.”

5. The advantages of using potential functions as force generators are: (i) the influence of separate potential
functions can be added, and (ii) they are straightforwardly integrated as external forces into the “Jacobian
transpose” (Sect. 7.11), the Newton-Euler (Sect. ??), and the Euler-Lagrange frameworks (Sect. 5.3).

The only limits on the choice of potential function are the user’s creativity and the computer’s computational
power. This means that a plethora of different applications exist. The most attractive advantages of potential
fields are their implementation simplicity and their intuitivity. Their common disadvantage are the inevitability
of local minima, i.e., places in which the robot “gets stuck” because the forces generated by different real and/or
artificial sources cancel each other. It is very difficult to avoid local minima, especially if several potentials are
combined. One often-used solution to cope with them is to slightly “disturb” or “shake” the robot so that it can
escape from the local minimum, [3].

Most practical implementations of potential fields use a discretization of the robot’s space of possible positions
and orientations, in order to limit the computational complexity of the problem. More about this in Section 11.8.

11.5 Optimization of the timing along a given path

Motion planning that tries to minimize the time required for a given geometrical path involves rather heavy
mathematics (optimization of cost functions that rely on the explicit knowledge of the robot’s dynamics) which
is outside of the scope of this introductory text, [4, 19, 47]. However, some important and intuitively clear results
are worth mentioning:

1. During the complete time-optimal motion, at least one of the joint motors works at maximum torque.

2. The motion planning then boils down to (i) finding when to switch the sign of the torque in the maximally
loaded motor (this is called bang-bang control) and (ii) using the inverse dynamics of the robot to calculate the
torques in all motors.

3. These time-optimal motions give the user no control over the frequencies that appear in the motion set-point
signals. Hence, the chances increase to excite some natural frequencies of the robot system.
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11.6 Smooth paths

Different smoothness criterions exist, [57]:

1. The integral of the norm of the instantaneous translational velocity of a reference point on the robot. This
gives the shortest path.

2. Similar integrals of the norm of the acceleration and the jerk. As said before, acceleration and/or jerk are a
computationally tractable trade-off between complexity and optimality.

3. The integral of the instantaneous power needed to drive the robot. This gives the minimum energy path.

The integrals to be minimized are of the following form:

I =

∫ f

i

〈g(t), g(t)〉 dt. (11.2)

“i” and “f” are the initial and final positions of the robot, and g(t) is one of the above-mentioned (time-dependent)
functions. The brackets “<,>” denote an appropriate metric on SE(3). What is “appropriate” depends on the
task and on the user’s preferences, [39, 40]. The reason to use the integral of the acceleration’s norm has
been discussed in the introduction to this Chapter too: smoothness alone is not sufficient to avoid oscillatory
behaviour, one also has to keep the magnitude of the generated excitations as low as possible. Solving the
minimisation problems of Eq. (11.2) involves techniques from the calculus of variations (cf. the Euler-Lagrange
approach discussed in the Chapter on dynamics) plus differential geometry techniques to calculate the scalar
product in all points on the trajectory. This text will not go into more details about the underlying mathematics,
but some results are again worth mentioning, [57]:

1. No analytical solutions exist for the general problem, only numerical approximations.

2. In the minimum distance trajectory, the reference point chosen on the robot moves along a straight line, and
the body rotates about an axis with fixed spatial direction. This looks a lot like the screw motion trajectories
discussed above, but in the present case the translational and rotational directions do not necessarily coincide.

3. In the minimum acceleration and minimum jerk trajectories, the robot moves through exactly the same positions
as in the minimum distance trajectory, but the timings along the path are different.

11.7 Mobile robot path planning

The following paragraphs discuss motion planning methods developed specifically for nonholonomic mobile robots
in a planar environment without obstacles. As for serial and parallel manipulators, the user input consists of
start and end positions and orientations, possibly extended with a number of via-points. The most important
characteristics of a mobile robot in the context of motion planning are: (i) the problem is three-dimensional: two
positions and one orientation degree of freedom; (ii) a mobile robot is a nonholonomic system, (iii) a limit exists on
the maximum curvature of the paths it can follow, and (iv) basically, it has two basic motion operators (STEER
and ROTATE). The methods described below are more or less ordered according to increasing complexity.

In this Section, the robot is assumed to move with constant speed. This is not a severe limitation, since
most practical automatic vehicles indeed do move with more or less constant velocity. Moreover, many of the
trajectory generation approaches of the previous Sections can be used to specify the transitions between regimes
with different speeds. One important consequence of a constant velocity is that the acceleration of the mobile robot
corresponds to v2/r, with r the (instantaneous) radius of curvature of the robot’s path, and v its (instantaneous)
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Figure 11.4: Clothoid of length l connecting two straight lines.

linear velocity. A constant velocity v then implies that the acceleration is proportional to the curvature κ = 1/r
of the mobile robot’s path. Hence, the optimal trajectories defined above in terms of a minimal integral of the
acceleration’s norm translate into minimal integrals of the curvature’s norm. Note that (i) curvature is a scalar
quantity, and (ii) the robot’s path is fully determined if the curvature of the path is known as a function of
travelled distance.

11.7.1 Straight lines joined by circular arcs

Dubins [10] (forward driving only) and Reeds and Shepp [44] (forward and backward driving) proved the following
facts:

Fact-to-Remember 65 (Shortest paths)
The shortest geometric paths for non-holonomic mobile robots are sequences of straight lines
connected by circular arcs corresponding to the minimal radius of curvature allowed by the
robot’s kinematics. If backward driving is possible, the straight lines can also be linked by
cusps, i.e., points where the robot changes from forward driving to backward driving or vice
versa.

In practice, the shortest path is also time-optimal since driving is achieved with constant (hence maximum) speed.
The major drawback of straight lines linked by circular arcs is that these trajectories produce discontinuities in
the curvature of the path, hence discontinuities in the torques required from the wheel actuators, which increases
the chance of slippage.

11.7.2 Segments joined by clothoids

Clothoids (or Cornu spirals) or Euler spiral, [12, 15, 20, 21, 28, 33, 49], are curves whose curvature increases or
decreases linearly with arc length. (Their properties were described by the Swiss mathematician Jacob (James,
Jacques) Bernoulli (1654–1705), [49, 7]; Euler (he again!) found a mathematical description; Cornu enters the
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scene in 1876 because he was the first to accurately draw them; and the Italian mathematician Ernesto Cesàro
(1859–1906) coined the name “clothoid” in 1886; clothoids were popular at the end of the 19th century, for
planning curves in railway tracks, [2].) Hence

κ(s) =
dθ(s)

ds
= βs, (11.3)

where κ(s) is the curvature at arc length s along the clothoid, θ(s) is the direction of the tangent along the
clothoid at the point with arc length s, and β is the linear proportionality constant (Fig. 11.4). For a curve with
length l, and spanning a total orientation difference α, integration from s = 0 to s = l gives

θ(s) = 2α
s2

l2
. (11.4)

This result can also be found from the minimisation of a cost functional as in Eq. (11.2). Clothoid curves don’t
have analytical position solutions (they do have closed-form tangent direction solutions, Eq. (11.4)), so numerical
approximations are required. Moreover, joining two arbitrary segments yields multiple configurations, [12, 20].

11.7.3 Segments joined by cubic spirals

Circular arcs minimize the sum of the squared acceleration along the arc, but have discontinuities at the transition
points with other segments. Hence, smoother paths including the transition points will be found by minimizing
the integral of the squared jerk while allowing arbitrary initial and final curvatures. These paths are called cubic
spirals, [20]. As was the case for clothoids, cubic spirals have an analytical solution for the tangent direction:

θ(s) = 3α
s2

l2
− 2α

s3

l3
. (11.5)

Compared to circular arcs, cubic spirals have a larger turning radius, and are longer. Compared to clothoids, they
are shorter but have a larger maximum curvature. Cubic spirals have the same problem when connecting two
arbitrary segments: no closed-form solution is known, only numerical approaches work, and multiple configurations
appear.

11.7.4 Elastica under tension

One of the optimisation criterions discussed in the previous Sections is the minimal integral of the norm of the
acceleration; which, for mobile robots, reduces to

min

∫ l

0

κ2(s) ds. (11.6)

This criterion takes only curvature information into account, and not the length of the curve. Criterion (11.6) is
easily adapted to include a length minimisation too:

min

∫ l

0

(
κ2(s) + σ

)
ds. (11.7)

σ is the tension of the curve. A larger σ gives a solution with a shorter length, but a higher overall curvature. σ
can be interpreted as a force applied at both ends of the curve, tangential to the curve: the higher this force, the
shorter the curve, if this curve is considered to be an elastic rod that can store (elastic) potential energy. Hence,
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Figure 11.5: Growing of configuration space obstacles by the dimensions of the robot. For simplicity reasons, a
circular omnidirectional robot is considered. (Figure courtesy of J. Vandorpe.)

these curves have been named elasticas, [5, 11, 31]. The snakes which are so common in the vision literature are
just special cases of the elasticas.

Applying an Euler-Lagrange solution approach to the integral in Eq. (11.7) gives the following differential
equation:

dκ(s)

ds2
+

1

2
κ3(s) − 1

2
σκ(s) = 0. (11.8)

This differential equation has a “closed-form” solution in the form of elliptic functions, [5, 27]. (Elliptic functions
were defined by the same Prussian mathematician Karl Gustav Jacob Jacobi (1804–1851) to whom also the
matrix of first partial derivatives is named; this Jacobian matrix has been used extensively in the chapters on
robot kinematics.) However, for arbitrary initial and final conditions, numerical procedures are needed, giving
multiple configurations, just as for clothoids or cubic spirals.

11.7.5 Harmonic functions

Harmonic functions are the most complex but also most powerful model-based approaches to path planning. They
are solutions to the Lagrange equation, that models the heath flow between a hot source and a cold sink, or the
water flowing down from a source in the “mountains.” The current postion of the robot is the “source,” the goal
position is the “sink.” Obstacles correspond to high temperature/altitude, so that they are naturally avoided.
The drawback of solving the Lagrange equation in real time becomes already difficult for moderately complex
environments. On the other hand, it can be proven to have no local minima (i.e., water will always find the sea).

11.8 Configuration space

The notion of generalised coordinates has already been used before in this text. The space of all generalised
coordinates representing position and orientation is called the configuration space, [32]. For a mobile robot on
a planar surface the configuration space is three-dimensional, i.e., SE(2). If no obstacles are present in the
robot’s environment, the configuration space has coordinates in all of SE(2). When obstacles fill some regions
in configuration space, the coordinates in SE(2) where the robot would collide with the obstacles are marked.
In fact, the obstacles fill the region corresponding to their own space, which is “grown” by the dimensions of
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Figure 11.6: Graph of straight-line paths from start to goal in configuration space with obstacles. (Figure courtesy
of J. Vandorpe.)

Figure 11.7: Simple nominal motion plan in map of PMA lab (left). This path results from a wavefront propagation
procedure in the configuration space with grown obstacles (right). (Figure courtesy of J. Vandorpe.)

the robot (Fig. 11.5). In the simplest approximation, one doesn’t take the orientation into account; hence the
obstacle in configuration space is constructed by translating the outline of the robot around the contour of the
obstacle. Figure 11.7 shows the result of a simple nominal motion plan (straight lines and circular arcs) in a map
of the PMA lab, with and without grown obstacles.

One can divide the configuration space in “cells” that are either free or occupied. Motion planning in its
simplest (i.e., holonomic) form then reduces to graph searching : find paths connecting the free cells of, respectively,
the initial and desired final poses of the robot (Fig. 11.6). Hence, most of the well-known graph search algorithms
can be applied to mobile robot motion planning. One of the best-known is the A∗ algorithm, [14, 38, 54]. This is
a breadth-first algorithm that decides on its next move by considering the sum of (i) the cost of the path already
travelled, and (ii) the expected cost of the path to the goal. Selecting this last cost function is of course the
difficult and creative part of the solution.

Most often the configuration space is discretised, i.e., only points on a grid are taken into account in the
search procedures. This grid can be regular, or more detailed in regions where higher accuracy and resolution are
required. The choice of grid resolution is a trade-off between computational effort and optimality of the solution.
Another reason to use discretisation is that, for example, the potential in each grid point, resulting from all
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Figure 11.8: Each object is approximated by a sequence of straight lines with a user-specified length and a
discretised orientation (four choices in the case depicted here). (Figure courtesy of J. Vandorpe.)

artificial potential fields in the environment, can be calculated off-line.
An alternative to the A∗ algorithm is the wavefront algorithm, also called the bush-fire algorithm: one starts

from the initial position of the robot in its configuration space, and one propagates one free cell further (prop-
agation could mean different things: potential field, distance, cost, etc.); from this set of newly reached cells,
one iterates the propagation to the next neighbouring free cell. (The physics behind this approach is Huyghens
principle, which Christiaan Huyghens first used as a model for light rays.) One stops the iteration as soon as the
goal position is reached.

Hybrid procedures The plans generated by the procedures above consist most often of straight lines in con-
figuration space. This kind of paths do not satisfy the nonholonomicity constraints of most mobile robots. Hence,
some post-processing of the paths is required. One interesting approach in this respect combines the advantages
of configuration space planning (tractable speed for specified resolution) with the advantages of potential fields
(flexibility; influences of different sources are easily combined): the motion plan generated by a configuration
space planner (such as depicted in Fig. 11.7) is made into an elastic curve (elastic band, [43], or snake, [22]) that
can be deformed on line in order to adapt the path to changes in the environment and obstacle outlines found
from sensor data. The deformation ability of the snake is determined by the artificial dynamic properties of
the curve (stiffness and mass) and of the environment space (damping generated by considering the space filled
with a viscous fluid). The actual form of the trajectory then results from numerically solved dynamic algorithms
(Euler-Lagrange type), [36, 43]. Incorporating a dynamics algorithm into the motion generation ensures that the
on-line trajectory planner will not react too nervously to the inevitable sudden changes generated by sensor-based
map building procedures.

11.8.1 Example of full nonholonomic planning

The off-line configuration space planners work mostly with (i) polyhedral approximations of all objects in the
world, and (ii) connected straight lines as approximations to the real robot path. The nonholonomicity constraints
of most mobile robots are only taken into account by a couple of more advanced (and hence computationally
much more expensive) planners. Recently, a very fast, but discrete (hence suboptimal) full nonholonomic motion
planner for a car-like mobile robot has been developed, [52]. It has efficient, approximate methods in each of the
two classical planning steps:

1. Configuration space construction. This is a very heavy task, in the three-dimensional space SE(2) of the robot’s
position and orientation. A discretised configuration space is used, in which each object is first approximated
by a sequence of small straight lines with a user-specified length and a discretised orientation (Fig. 11.8).
Then each line segment in this approximated model is matched with the model of the robot (Fig. 11.9), which
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Figure 11.9: Typical step in the construction of the discretised free configuration space (“template”) for a rect-
angular robot with an L-shaped obstacle. (Figure courtesy of J. Vandorpe.)

results in a set of allowed orientations for the mobile robot in each grid point of the configuration space. This
matching can be done very fast by applying an off-line calculated template corresponding to each discretised
line segment: the template consists of a set of discrete orientations in each grid point (“1” indicates free space,
“0” indicates occupied space) in a user-specified area around the line segment. The template matching can
be implemented by “inclusive or” operations which any computer can process very efficiently: start with a
fully reachable configuration space (all discrete cells contain a “1”), and then apply an inclusive or with the
template placed at each discretised line segment in the configuration space (i.e., wherever a “1” appears in the
configuration space, and a “0” in the template, the configuration space “1” is overwritten by a “0”).

2. Path construction. The construction of a feasible path in the free space generated in the previous step is also
performed by a discrete template: the possible nonholonomic motions of the mobile robot during a small, user-
specified time interval can be calculated off-line, and stored in a discrete template as depicted in Figure 11.10.
These templates are applied in a wavefront procedure starting from the initial robot pose, until the desired
end pose is reached. In each intermediate grid point one memorizes the predecessor templates that have been
applied to this grid point most distantly in time and corresponding to each of the possible discrete orientations,
such that the construction of the fastest path is a very straightforward backchaining in the lists of predecessors.

The method described above can be tuned by the user to be either more accurate or more efficient, by adapting
the resolution of the discretisations applied in the templates and in the configuration space grid. Figure 11.11
shows two planning results generated by this method.

A final remark to conclude this Section: due to computational limitations, most implemented planners work
in 2D, but full 3D applications begin to become feasible on high-end workstations, e.g., [25, 36].
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Figure 11.10: One step in wavefront procedure for mobile robot with limit on curvature radius. The continuous
curves are paths with discretised turning radius; the bold “V” shapes are the resulting discretised final poses (i.e.,
approximations to nearest grid point) that the robot can attain. (Figure courtesy of J. Vandorpe.)

11.9 Force-controlled motion specification

Whenever the environment of the robot is not very structured (i.e., the robot doesn’t have an accurate a priori
map of the objects), the use of sensors is required to continuously adapt the information about the environment
geometry. Chapter 12 deals with the case of dynamic map building for a mobile robot using ultrasonic distance
sensors and a laser range finder; in that case, the global planning procedures of the previous Sections can be used
each time the environment map has been updated. This Section presents a different kind of adaptive, sensor-based
motion specification, applicable to tasks in which the robot uses sensors that give local information about the
environment’s geometry; examples of this kind of sensors are: a wrist force sensor, infrared, inductive or capacitive
(short) distance sensors, local laser scanners, etc. The characteristic of these sensor-controlled motions is that
one wants the robot to follow (one or more) surface(s) in the environment while (i) maintaining a user-specified
relative position and/or orientation with respect to these surfaces and without making contact (in the case of
desired distance between robot and environment), or (ii) making contact but without generating excessive contact
forces.

This Section treats the latter case only: contacts occur between robot and environment, and a wrist force
sensor measures the resulting contact forces; tasks like these are often called compliant motions, or constrained
motions, [9, 35]. The former case of non-contact compliant motions is very similar: desired distances can be
transformed into artificial “contact” forces by introducing a virtual elastic element between the robot and the
environment, with user-specified impedance properties.
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Figure 11.11: Two results of the discretised non-holonomic motion planner of Section 11.8.1. The total planning
time is less than one second on a 150MHz personal computer. (Figure courtesy of J. Vandorpe.)

11.9.1 Physical and mathematical concepts

Constrained motion is completely and unambiguously described as follows [29, 34]: the rigid manipulated ob-
ject must execute an instantaneous rigid body motion (twist t = [ωT vT ]T ) that is reciprocal to all ideal (i.e.,
frictionless) reaction forces that the actual contact situation can possibly generate (wrenches w = [fT mT ]T ):

ωT m + vT f = 0. (11.9)

ω is the angular velocity three-vector of the manipulated object; v is the linear velocity three-vector of a reference
point on the rigid body, with respect to the origin of some reference frame; f is the linear force component (three-
vector) of a possible ideal reaction force; m is the moment component, i.e., the sum of (i) a pure moment generated
by the contact situation, and (ii) the moment generated by f applied at the reference point on the manipulated
object, and with respect to the same origin as above.

The vanishing of the reciprocity condition Eq. (11.9) is a physical property (the motion t generates no power
against the ideal reaction force w) and is hence invariant under a change of world reference frame, a change of
reference point on the manipulated object, and a change of physical units. It is universally valid for all contact
situations between rigid bodies, however complex.

The vector space of all reciprocal twists in a given contact situation is called the twist space T ; the vector
space of all ideal contact wrenches is the wrench space W. The sum of the dimensions of T and W is always
six; T and W are reciprocal vector spaces. Take the example of the cylindrical peg-in-hole task (Fig. 11.12):
T is the two-dimensional space of translations along, and rotations about, the hole’s axis (Z), and W is the
four-dimensional space of moments about, and forces along, X and Y .

11.9.2 Motion specification

The principal motion specification tool is the so-called Task Frame (TF), or compliance frame: the TF is an
orthogonal reference frame that is attached by the user to a characteristic geometric feature on either the robot
or the environment. Examples of such characteristic features are: vertices, edges, planes, or kinematic joints
(such as a hinge of a door). The TF has six programmable task frame directions: each of its three orthogonal
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Figure 11.12: Insertion of a cylindrical peg.

axes is used once as an axial vector ([13], linear velocity or force), and once as a polar vector (angular velocity or
moment). The task programmer places the TF in the contact configuration in such a way that (i) a basis for the
twist vector space T consists of nt (nt 6 6) TF directions (the so-called position or velocity-controlled directions),
and (ii) a basis for the wrench vector space W consists of the remaining nw (nw = 6 − nt) TF directions (the
force-controlled directions). Figure 11.12 shows one possible TF for the peg-in-hole action: the origin is placed
on the axis of the peg, with the Z axis parallel to the peg’s axis. T is modelled by the axial and polar Z axes,
and W by the axial and polar X and Y axes.

An elementary TF motion is specified by giving velocity set-points along the velocity-controlled TF directions,
and force set-points along the force-controlled directions. These specifications (also called artificial constraints,
[35]) must be compatible with the model of the constraint as described by the TF directions. The task continues
until a stop condition, or termination condition, is fulfilled. This termination condition typically consists of a
change in the contact situation. In the simplest case, this is indicated by one or more sensor measurements
crossing a specified threshold (which is typically “zero”): gaining/loosing a contact corresponds to a sudden
increase/decrease in the reaction force in a certain direction, as well as, dually, to the sudden decrease/increase
of the velocity in this direction. The specification for the peg-in-hole task (Fig. 11.12) could be: (i) a desired
translational velocity along the Z axis, (ii) no angular velocity about Z, (iii) no forces along, or moments about,
the X and Y axes, and (iv) a force threshold crossing along the Z axis signals the end of the task. This force
threshold should be greater than the expected friction during the action.

11.9.3 Tracking

In general, the geometry of the contact situation changes continuously during the motion. A TF motion should
be able to adapt the position and orientation of the TF in such a way that the TF always remains compatible
with the current contact, and keeps the same relative position and orientation with respect to the contact. This
makes the specification simpler since, as seen from the TF, the contact situation remains time-invariant: (i) the
force- and velocity-controlled TF directions do not change, and (ii) the task specification can use constant motion
or force set-points. The adaptation of the TF’s location is often called tracking. Tracking consists of corrective
rotations about polar TF directions, and/or corrective translations along axial TF directions. Three types of
tracking exist: (i) no tracking, i.e., the TF directions remain fixed to either the manipulated object (as in the
peg-in-hole task); (ii) model-based tracking, i.e., the TF’s update is directly derived from the constraint model as
captured in the TF, and from the executed motion; and (iii) sensor-based tracking, i.e., the force and/or motion
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Figure 11.13: Tracking strategies, based “on velocities” and “on forces.” The orientation error ∆α is estimated
by comparing the X and Y components of the measured force and velocity vectors. The index 0 indicates the real
task frame, while the index t indicates the modelled task frame. v is the measured velocity; F is the measured
force.

measurements are used to estimate how much the TF has moved away from a geometrically compatible position
(this estimation procedure is called identification of the geometric TF uncertainties), and then these estimates
are input to a tracking controller that generates corrective motions for the TF. The tracking is based on the
instantaneous force and/or velocity measurements; the corresponding tracking strategies are called “tracking on
forces,” or “tracking on velocities,” respectively. The identification of the orientation error ∆α is illustrated by
Fig. 11.13:

1. Based on velocities: the commanded velocity in the nominal task frame is changed by the force controller, in
order to keep the manipulated object pushed against the environment. This requires a velocity component
along the Yt axis. ∆α is estimated as ∆α = arctan(−vyt/vxt) ≈ −vyt/vxt.

2. Based on forces: the nominal (ideal) reaction force lies along the Yt axis, but a force component along Xt

is measured because of the orientation error ∆α between real and modelled task frame. This angle ∆α is
identified as ∆α = arctan(−Fxt/Fyt) ≈ −Fxt/Fyt.

The orientation error ∆α is continuously fed back to the model, with certain tracking control dynamics. (This
does not mean that the physical motion of the end-effector must follow this tracking.) Identification based on
forces is disturbed by contact friction; identification based on velocities is disturbed by compliance of the robot,
the manipulated object and the environment.

11.9.4 Some examples

The following paragraphs give an overview of elementary force-controlled motions that can be specified by the TF
formalism, [6]. Each motion is illustrated by a sketch of the contact situation, the “standard” location of the task
frame, and a textual motion specification of the task. The semantics of the task specification are not formally
defined; they should be clear from the context. The actions are more or less ordered according to the complexity
of the underlying control. This complexity is mainly due to (i) increased flexibility in the specification, and (ii)
increased uncertainty in the contact models. Remark that for most tasks the task specification is not unique.

Guarded approach (Fig. 11.14). This is the simplest action. The force “control” is only used to detect the
transition between the no-contact and contact states: the termination condition of the task consists of detecting
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Z Y
X

move compliantly {
with task frame directions

xt: velocity 0 mm/sec
yt: velocity 0 mm/sec
zt: velocity v mm/sec
axt: velocity 0 rad/sec
ayt: velocity 0 rad/sec
azt: velocity 0 rad/sec

} until zt force < -f N

Figure 11.14: Guarded approach motion. The robot moves the manipulated object in free space, and stops
when a contact force is felt. Remark the convention used in the textual specification for force measurements and
set-points: the reaction force is directed from the environment into the manipulated object.

X
Y Z move compliantly {

with task frame directions
xt: force 0 N
yt: velocity v mm/sec
zt: force 0 N
axt: force 0 Nmm
ayt: force 0 Nmm
azt: force 0 Nmm

} until time > t sec

Figure 11.15: Turning a crank.

a (sufficiently non-zero) reaction force. The task frame is placed somewhere on the object, with, for example, the
axial Z axis being the direction in which the robot must move in order to make contact.

Turning a crank (Fig. 11.15). The robot is connected to a revolute joint, whose rotation axis is not exactly
known. However, many cranks have two revolute joints: one on the axis of the crank, another one at the
crank’s handle. This last joint allows the robot to change its orientation with respect to the task frame. This
“redundancy” has two simple solution alternatives: (i) the end-effector orientation remains constant with respect
to the task frame, and (ii) the end-effector orientation remains constant with respect to the absolute world.

Aligning a block with a surface (Fig. 11.16). In this task, force control serves two purposes: (i) it pushes the
block against the surface with a certain force in order to ensure a contact; (ii) it regulates two reaction moments
to zero, in order to align the contacting face of the block with the surface.

Placing a block in a corner (Fig. 11.17). This is equivalent to three of the previous tasks in parallel, i.e.,
one for each face of the block.

2D contour tracking, or edge following (Fig. 11.18). The task can be described as “follow an unknown and
arbitrary two-dimensional contour in the XZ plane while moving at constant tangential speed and while applying
a constant normal force; the orientation of the end-effector is to remain constant with respect to the world.” The
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Z X

Y

move compliantly {
with task frame directions

xt: velocity 0 mm/sec
yt: force -f N
zt: velocity 0 mm/sec
axt: force 0 Nmm
ayt: velocity 0 mm/sec
azt: force 0 Nmm

} until time > t sec

Figure 11.16: Aligning a block with a surface.

Z X

Y

move compliantly {
with task frame directions

xt: force -fx N
yt: force -fy N
zt: force -fz N
axt: force 0 Nmm
ayt: force 0 Nmm
azt: force 0 Nmm

} until time > t sec

Figure 11.17: Placing a block in a corner.

Y direction is to be the normal direction, while the tangential velocity is specified along the X direction. The
task frame’s orientation about the Z axis must continuously be adapted (“tracked”) to the changing direction of
the contact normal.

Following a 3D seam (Fig. 11.19). This task is also called compatible seam tracking, since the shape of the
manipulated object is compatible with the shape of the seam. It is the combination of two 2D contour following

X

Y Z

move compliantly {
with task frame directions

xt: velocity v mm/sec
yt: force f N
zt: velocity 0 mm/sec
axt: velocity 0 rad/sec
ayt: velocity 0 rad/sec
azt: track (on velocities)

} until until distance > d mm

Figure 11.18: 2D contour folowing. The task frame’s X axis is tangential to the contour; Y is the outward
pointing normal.
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X

Y

Z

move compliantly {
with task frame directions

xt: force -fx N
yt: force -fy N
zt: velocity v mm/sec
axt: track (on velocities)
ayt: track (on velocities)
azt: force 0 Nmm

} until distance > d mm

Figure 11.19: Following a 3D seam.

tasks. The Z direction of the task frame is parallel to the tangent to the seam; the X and Y axes point into the
two seam surfaces. The Z axis is velocity-controlled in translation, with the desired velocity as set-point, and
force-controlled in orientation, with zero set-point. Desired forces are exerted along X and Y , and tracking is
needed about both axes.
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versité Paul Sabatier, Toulouse, 1976.

[46] E. Rimon and D. E. Koditschek. Exact robot naviga-
tion using artificial potential functions. IEEE Trans.
Rob. Automation, 8(5):501–518, 1992.

[47] Z. Shiller and H.-H. Lu. Computation of path con-
strained time optimal motions with dynamic singular-
ities. Trans. ASME J. Dyn. Systems Meas. Control,
114:34–40, 1992.

[48] K.-T. Song. Planning and control of a mobile robot
based on a ultrasonic sensor. PhD thesis, Katholieke
Universiteit Leuven, Dept. Mechanical Engineering,
Leuven, Belgium, 1989.

[49] D. J. Struik. Lectures on classical differential geometry.
Addison-Wesley, 1961.

[50] R. H. Taylor. Planning and execution of straight line
manipulator trajectories. IBM Journal of Research and
Development, 23(4):424–436, 1979.

[51] L. Van Aken. Robot motions in free space: task specifi-
cation and trajectory planning. PhD thesis, Katholieke
Universiteit Leuven, Dept. Werktuigkunde, 1987.

[52] J. Vandorpe. Navigation techniques for the mobile robot
LiAS. PhD thesis, Katholieke Universiteit Leuven,
Dept. Werktuigkunde, 1997.

[53] K. J. Waldron. Geometrically based manipulator rate
control algorithms. Mechanism and Machine Theory,
17(6):379–385, 1982.

[54] C. W. Warren. Fast path planning using modified a∗

method. In IEEE Int. Conf. Robotics and Automation,
volume 2, pages 662–667, 1993.

[55] D. E. Whitney. The mathematics of coordinated con-
trol of prosthetic arms and manipulators. Trans. ASME
J. Dyn. Systems Meas. Control, 94:303–309, 1972.

[56] W. A. Wolovich. Robotics: basic analysis and design.
Holt, Rinehart and Winston, 1986.
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Chapter 12

Intelligent sensor processing

12.1 Introduction

A necessary (but certainly not sufficient!) condition for a robot to act intelligently, and to achieve autonomy and
robustness, is to use sensors so that it can find out how its environment looks like, and how it reacts with it.
Humans excel in using their sensorial capabilities, and, in the robotics context of object manipulation, they do
so especially with respect to their visual and tactile sensing capabilities. The state of the art in artificial sensing
comes not even close to this human sensing performance. The raw sensing itself is sometimes more accurate than
the human counterparts, e.g., distance or force measurement. But the major part of sensing is the intelligent
interpretation of the sensed data, i.e., making the transition from pure sensor data to information that is relevant
to the task the robot is currently performing, and that helps in completing this task. (Note, in this context, the
very significant difference between “information” and “data”!) At the very lowest (hardware) level, sensor data
processing consists of two steps:

1. Filtering. The raw sensor signals are processed in order to eliminate, as much as possible, the influence of
measurement noise, and the frequencies in the signals that are not important for the current task of the robot.
For example, if one wants a mobile robot to drive autonomously on a highway, it is not important to measure
the changes in the direction of the road at a level of, let’s say, less than one meter.

2. Transformation. Most often, the measurements that come out of the filter have to be interpreted in a setting
that is relevant to the current task. This requires a transformation from the “sensor frame(s)” to the “task
frame(s)” in which the robot task is specified. Transformation can consist of purely geometric operations only
(e.g., transforming the distance measured by one sonar sensor on the rim of a mobile robot to the distance
as “seen” from the reference frame somewhere else on the robot) as well as of combinations of data (so-called
sensor fusion) from different sensors. For example, to determine the direction of a wall next to the mobile
robot, one combines the distances to this wall as measured by sensors at different spots on the rim of the robot.

This text doesn’t consider filtering and transformation as “intelligent” sensor processing. On the other hand,
a typical example of what “intelligent” sensing really means is map building : a mobile robot drives around in
an unknown environment, using ultrasound or vision sensors, or a force-controlled robot moves its tool over an
unknown (set of) objects. The robots detect “landmarks” in that environment, i.e., features of the environment
that are particularly easy to detect with their sensors. For example: corners for ultrasound or force sensors;
specific textures for vision; particular contact situations or transitions for force sensors. Fully autonomous map
building is not yet state of the art, but for the easiest applications (i.e., mobile robot navigation) one has come
quite close (see Sect. 12.5)!
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This text considers map building as “high-level” robot control. It is supported by lower-level control techniques:

1. Low-level control. The state of the model is estimated from the measurements, and its evolution over time is
tracked. The Bayesian tool par excellence for this low-level control is the Kalman Filter, Sect. 12.3.1.

2. Medium-level control. In all but the simplest tasks, the robot passes through different stages in the task, each
with its own particular model. Hence, detecting which model is the correct one, and when a switch of model
is required, is the goal of the medium-level robot control. Once a model is chosen, the medium-level controller
must estimate where in the model the current sensor readings fit. The corresponding Bayesian tool is the
Hidden Markov Model, Sect. 12.4.

The Bayesian tool at the high-level control is the EM algorithm, Sect. 12.5. “Bayesian tools” are characterized
by the following properties:

1. Model = Bayes network. The robot system and its environment are physical objects, whose “interactions”
are detected by the sensors. The network models how the visible parameters of the model (i.e., the ones that
the sensors can detect) are influenced by the hidden parameters (i.e., the parameters that determine in which
sub-task the robot system is, and what the current interaction is). The goal of the Bayesian tools is to estimate
these hidden parameters.

2. Uncertainty = Probability distribution. The above-mentioned influences between hidden and visible paramters
are modelled as conditional probability distributions. General probability distributions can be quite complicated
to work with in computer algorithms. Hence, some sets of “practical” families of distributions have been
developed in the past century. The most popular family is the exponential family. It requires only a finite
(and often small) number of parameters to represent a wide range of probability density functions. Well-known
members of the exponential family are, [1, 27]: the normal distribution (“Gaussian”), the discrete distributions,
and the mixture distributions (i.e., weighted sums of Gaussians).

3. Bayes’ rule.

4. Maximum Likelihood Estimation (MLE). The likelihood is an important part of Bayes’ rule. It represents how
well a particular model explains the measured data. Hence, the “best” estimate of the model parameters is the
one that maximizes the likelihood. This is the most popular technique, although one also often uses Maximum
A Posteriori (MAP) estimation: not just the likelihood is maximized, but the product of the likelihood and
the prior, which gives the a posteriori distribution of the parameters.

Fact-to-Remember 66 (Basic ideas of this Chapter)
This Chapter presents model-based “intelligent” sensor processing techniques, based on
Bayesian probability theory. Three typical techniques are covered: the Kalman Filter for
state estimation and tracking, the Hidden Markov Model for map navigation, and the
EM algorithm for map building.

12.2 Robot sensors

The sensors used in robots are roughly divided into proprioceptive and exteroceptive sensors. Most industrial
robots use only the former, while one or more of the latter are indispensible for intelligent and autonomous robots:
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Proprioceptive sensors. These measure internal properties of the robot, i.e., motion of the joints, and/or
forces exerted at the joints. The following paragraphs give the most common sensors, without details about the
physical properties underlying their working. (See, e.g., [6] for a more thorough discussion on these physical
properties.)

1. Encoders and resolvers: these sensors measure the relative angle between two consecutive links in a robot.
Encoders come in two types: (i) the cheaper incremental encoders, that can only measure changes in the
angles, and (ii) absolute encoders, that measure the angle with respect to a fixed reference on the shaft. If
the transmission from motor to robot joint has a significant gear ratio (as is the case with most industrial
robots) then an encoder placed on the motor shaft gives more accurate joint angle measurements than an
encoder placed directly on the joint axis.

2. Tachos: these sensors produce a voltage that is proportional to the speed of a motor or joint axis. This
information could be (and in practice often is) constructed also by differentiation of the position signals
produced by encoders; however, these signals are most often in binary format, so that numerical differentiation
gives inaccurate results for low speeds or high sampling frequencies.

Tachos are needed if one wants to implement velocity control on the robot joints.

3. Current or torque sensors: these sensors measure the current in the motor armatures, or, more directly, the
torque that works on the joint axis. This information is necessary if one wants to implement torque control
on the robot joints.

4. Accelerometers: these measure the acceleration (in one or more spatial directions) at the point of the robot
to which they are attached. Note that (i) accelerometers give inaccurate results if the acceleration is small,
and (ii) angular acceleration is much more difficult to measure than linear acceleration.

Exteroceptive sensors. These measure interaction properties of the robot with its environment:

1. Force/torque sensors (or “force sensors” for short). These measure one to six components of the wrench (i.e.,
linear force as well as moment) exerted on the sensor. Physically, force sensors are most often deformation
sensors: they measure their own deformation under the influence of the external force, and then multiply
this deformation by their stiffness matrix. If these deformations are small, one uses strain gauges; for large
deformations, optical measurements are more appropriate.

Force sensors give very local and indirect information, i.e., only the contact points with the environment
generate signals, and it is difficult to find out from the resulting force and moment where and how the
contacts occur.

2. Distance sensors. These come in many types and prices, with strongly varying characteristics. Some of the
more popular ones are:

(a) Ultrasonic sensors. These are cheap, but give rather inaccurate results, due to the fact that (i) they use
rather wide beams (> 10 degrees), and (ii) the propagation of sound waves through the air is influenced
by turbulences of the air and by the temperature of the air. US sensors measure distances from about half
a meter to about fifteen meter.

(b) Infrared sensors. These measure the distance to an object by comparing the emitted and reflected intensities
of an infrared beam. It is obvious that these sensors are influenced by the surface properties of the
environment. Infrared sensors work from a couple of millimeters to a couple of centimeters.
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(c) Laser range sensors. These work on either the time-of-flight principle (i.e., multiplying the speed of light by
the time between emission of a pulse and reception of the echo) or on a phase shift detection between the
outgoing and incoming signal. Laser range sensors are meant for measurement over rather large distances
(from a couple of meters to many hundreds of meters.)

(d) Linear Variable Differential Transformers. An LVDT can very accurately (order of magnitude 5µm) mea-
sure distances from about half a millimeter to a couple of centimeters.

3. Gyroscopes. To measure the changes in the absolute orientation of a robot.

4. Cameras. CCD cameras (Charged Coupled Device) are most frequently used. Their output is an array of
pixels (“picture elements), containing gray or color values. Typical sizes of images are 640 × 512. Camera
images have the big advantage that they give very global information about a scene; their big disadvantage
is that it is so very, very hard to write computer code that “sees” the same things in the image as a human.

5. Tactile arrays: these are “artificial skin” sensors, consisting of an array of pressure-sensitive points. Their
output is comparable to the image of a CCD camera, but with much lower resolution. Tactile arrays are, for
example, used to detect contact points on the fingers of a robotic hand.

12.3 State estimation and tracking

If one knows what physical process the sensor is observing, and what the underlying physical properties are, one
can make a so-called estimator (or observer) i.e., a digital “filter” that uses a mathematical model of the physical
process, and extracts from the sensor signal the parameters of this model that most closely correspond to the
expected physical behaviour of the observed system. Note that this digital observer should use the output from
the analog low-pass filter, instead of the raw sensor data, unless these raw data are of a very high quality. In
robotics, observers are often used as state estimators: they estimate the position, velocity, and/or acceleration of
the robot’s joints, or of objects in the “field of view” of the sensors, [10, 15, 22, 25, 26].

Typically, a digital filter works with a fixed sampling period, i.e., every T s units of time a new measurement is
taken and processed. For robotic purposes, it is also often necessary that the filter works on line, i.e., the robot
needs the output of the filter as soon as possible after the new measurement is taken. Such an on-line filter is
also called a recursive filter. The basic components of linear filters or estimators are (Fig. 12.1):

The state of the observed system. As said before, an estimator works with a mathematical model of the
physical process it observes. This means that it represents the current state of the process by a set of real
numbers, that each represent the last estimate of one particular parameter in the model. All these numbers
are assembled in what is called the state vector x̂(k). The index k refers to the instant in time (measured in
discrete numbers of sample periods T s) at which the state vector is valid; the hat “ˆ” denotes the estimated
state vector, while x(k) is the real, unknown state. The filter is recursive in the sense that x̂(k) is calculated
from all previous states x̂(j), j 6 k, and all measurements z(j), j 6 k, up to the time instant k. Often, the
state x̂(k) contains all information available about the process at instant k. (In this case, the system under
observation is called a Markov process.) Hence, the new state estimate x̂(k + 1) is to be calculated from x̂(k)
and z(k) only.

Prediction of next state. If the estimator has a mathematical model F of the observed process, it can use this
model to predict the next state:

x̂(k + 1|k) = F (k)x̂(k), (12.1)
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if the model is linear, or, more generally,

x̂(k + 1|k) = F (k)(x̂(k)), (12.2)

if the model is nonlinear. x̂(k + 1|k) denotes the prediction of the state at instant k + 1 if the estimate of the
state at time instant k is known.

For example, if the state vector x contains (one dimension of) the position p and velocity v of an observed
object, the state prediction function F (under the assumptions of a sample period of T s, and constant
velocity!) looks like:

x(k + 1) =

(
1 T s

0 1

)
x(k). (12.3)

Prediction of next measurement. Similarly, the value of the next measurement can be predicted from the
model of the process, and a model H of the sensing action:

ẑ(k + 1|k) = H(k)x̂(k + 1|k), or ẑ(k + 1|k) = H(k)(x̂(k + 1|k)). (12.4)

Innovation. If the model is completely correct, and if the estimated state corresponds exactly to the real state,
and if there are no noise or other disturbance sources in the system, then the predicted measurement will
correspond exactly to the new measurement. Of course, these three pre-conditions are never completely
fulfilled in practice, so the predicted and real measurement will differ:

ν(k + 1) = z(k + 1) − ẑ(k + 1|k), (12.5)

where the vector ν is called the innovation, [17], i.e., the new information that the latest measurement brings
to the observer. Information is to be understood here in the sense that the innovation contains that part of
the evolution of the observed system that the observer was not able to predict.

Correction. The predicted state x̂(k + 1|k) is now adapted to give a new state estimate x̂(k + 1) by means of
a feedback law based on the latest innovation. Most often, this feedback is simply proportional:

x̂(k + 1) = x̂(k + 1|k) + W (k + 1)ν(k + 1). (12.6)

The matrix W (k) is called the gain matrix. In general, it can change from sample instant to sample instant,
hence the index k. For a deterministic observer, this gain matrix is usually constant, and determined by
classical algorithms such as pole placement, see e.g., [13].

12.3.1 Kalman filter

The previous Section gave an overview of the basics behind state estimators. In practice, many sensors are
subjected to significant levels of “noise.” For example, ultrasonic sensors give a distance measurement that
heavily depends on the turbulences in the air, as well as on the air temperature. Hence, the distance estimation
is noisy. Moreover, the sensing beam of the US sensor is relatively wide, so that also the direction estimation is
noisy. These are two examples of measurement noise. A second source of noise is often called process noise: this
stems either from an intrinsically noisy physical process (for example Brownian motion of molecules in a liquid),
or from a process whose evolution in time is not accurately known. In robotics, noisy processes are not very
common, but “uncertain” (stochastic) processes are. For example, the distance between the wheels of a mobile
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Prediction of next statex̂(k + 1jk) = F (k)x̂(k)
State at time kx(k) State estimate at time kx̂(k)

Innovation
Update of state estimate

Transition to next statex(k + 1) = F (k)x(k)
Prediction of next measurementẑ(k + 1jk) =H(k)x̂(k + 1jk)
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z(k + 1) =H(k)x(k)Measurement at time t(k + 1)

Figure 12.1: Digital estimator: overview of the method.

robot cannot be known exactly since rubber wheels change their contact points with the ground under changing
loads and driving conditions.

One very popular recursive estimator is the Kalman filter. It takes into account process uncertainty as
described above. The Kalman filter can be derived in many ways. One is as an optimum linear least-squares filter :
it minimises the mean of the square of the error between the measurement and the prediction, [3, 14, 18, 19, 28, 29].
(In fact, it reformulates the classical least-squares solution to a curve fitting problem, as it was originally described
by Gauss; the innovative ideas of Kalman were to find a recursive implementation.) Another approach to derive
the Kalman Filter is to start with Bayes’ rule: if the prior probability is a Gaussian, and the sensor uncertainty
is also represented by Gaussians, then the posterior probability is also a Gaussian, [8, 21, 24, 33]. The Maximum
Likelihood Estimation of a Gaussian is simple, since it coincides with its mean.

All these properties will not be proven here; the interested reader is referred to the given literature. The
following paragraphs just give the extensions to the deterministic estimator described in the previous Section.
These extensions (Fig. 12.2) involve the covariances of the states and the measurements. For example, the
covariance of a state vector x(k) is the matrix of the expectation values of (x(k)−E(x))(x(k)−E(x))T , (E(x) is
the expected value, i.e, the mean, of the state vector x) and is a measure of how much certainty one has about the
estimate x̂(k) of the state x(k), given the uncertainty on the process and the measurements. Roughly speaking:
the larger the covariance, the more uncertain the estimate. So, the estimation procedure of the previous Section
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is adapted as follows:

The state of the observed system. The current knowledge about the state x̂(k) is uncertain, and this uncer-
tainty is modelled by a covariance matrix P (k). At the start of the estimation process the user has to fill in
some intial value for this covariance.

Prediction of next state. Also the state prediction x̂(k + 1|k) is subjected to uncertainty, stemming from the
fact that the current state vector x̂(k) is uncertain, as wel as, in general, the observed physical process itself.
When the filter is running, the update of the state covariance according to the model is found as follows:1

P (k + 1|k) = F (k)P (k)F T (k) + Q(k). (12.7)

The covariance matrix Q(k) represents the process uncertainty at time instant k. The value of this covariance
depends on the uncertainty characteristics of the process.

Prediction of next measurement—Innovation. Similarly for the prediction of the measurement: this pre-
diction is subjected to a so-called innovation covariance, denoted by S(k):

S(k + 1) = H(k)P (k)HT (k) + R(k). (12.8)

The covariance matrix R(k) represents the measurement noise (or uncertainty) at time instant k. The value
of this covariance depends on the noise characteristics of the sensors.

Correction. In order to obtain a minimum least-squares estimator, the gain matrix W (k + 1) of Eq. (12.6) is
calculated as

W (k + 1) = P (k + 1|k)HT (k + 1)S−1(k + 1). (12.9)

We refer to the literature for a thorough derivation of this result. What is important in the context of this
course is to realize that:

1. A large gain matrix means that much emphasis is put on the newly arrived measurement, Eq. (12.6).

2. The gain is large if (i) the state is inaccurately known (large covariance P ), (ii) the sensitivity of the
observations to changes in the state is large (large H), or (iii) the measurement uncertainty is low (small
covariance S), [8].

3. Contrary to the deterministic estimator, the Kalman filter has an automatically adaptable gain: the gain
changes according to how uncertain the latest estimate was.

4. If a constant real state vector is estimated, the Kalman filter estimate converges to this real state vector.
This means that the gain reduces to zero (the filter becomes very “stiff”) and hence the filter will become
very insensible to newly occurring changes in the state.

Finally, with this newly calculated gain, the state covariance is updated as follows:

P (k + 1) = P (k + 1|k) − W (k + 1)S(k + 1)W T (k + 1). (12.10)

The minus sign in this equation implies that the estimate of the state becomes less uncertain: this is what
should be expected, since the estimator has taken into account new measurement information.

This Section ends with some practical facts about Kalman filters:

1We leave out the details of the derivation of this formula; just note that the update involves the process update mapping F .
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Figure 12.2: Kalman filter: overview of the method.

Forgetting factor/fading memory. In a very dynamic environment, it is often necessary to “forget” old data,
since it doesn’t give any information anymore about the current state of the system. Hence, extensions to
the above-mentioned Kalman filter exist, that apply fading to old measurements and estimates.

Fudging. Even if the estimate of the Kalman filter gets better and better (and hence the uncertainty represented
in the covariance matrix decreases) when collecting more sensing data, it might be interesting to avoid its
covariance to drop below a certain threshold. If one does not do this, the filter will become very “rigid,” in
the sense that it is very sure about its estimate; this makes it very difficult to react to sudden changes in
the observed system. Hence, if such sudden changes are expected, an artificial level of covariance (sometimes
ironically called the “fudge factor”) can be introduced, in order to keep the filter active and alert.

Statistical checks. The stochastic parameters int he Kalman filter are not only used to model the uncertainties
in the measurements and the state estimates; they can also be used to check whether the models F and H

are still valid representations of the observed system. If these are indeed valid models, the innovations ν(k)
should have a white noise statistical distribution; i.e., they should be completely random. However, if the
model is not a faithful representation of the observed system, the statistical distribution of the innovations
will exceed some user-defined, statistical confidence level. Most often, so-called χ2 (“chi-square”) tests are
used, [3].

Extended (or modified) Kalman filter . If the measurement and/or state models H and F are nonlinear,
one could still apply the general form of the estimator, as described above. The state and meaurement
predictions then use the linearized parts of F and H around the current estimated state.

Sensor fusion. Intuitively speaking, it should be possible to “fuse” the data coming from different sensors, with
different covariances, into one single “artificial sensor” with higher accuracy. For example, the mobile robot
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Figure 12.3: Raw data from laser range finder scan. (Figure courtesy of J. Vandorpe.)
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Figure 12.4: Figure 12.3 after thresholding. (Figure courtesy of J. Vandorpe.)

position and velocity estimates could be the result of such an integration between (i) the forward kinematics
based on wheel encoder measurements, (ii) the orientation updates given by a gyroscope, and/or (iii) the
meaurements of “landmarks” in the environment for which the absolute position is a priori known to the
robot.

What is the basic principle of sensor fusion? Assume that n sensors give measurements zi, i = 1, . . . , n, with
covariances Ri, of the same observed feature. Then, the best estimate ẑ for the fused measurement would
be, [12],

ẑ =

(
n∑

i=1

R−1
i

)−1 (
n∑

i=1

R−1
i zi

)
, with covariance R =

(
n∑

i=1

R−1
i

)−1

. (12.11)

12.3.2 Application: mobile robot position tracking

This Section presents the results from the implementation of some of the sensor signal processing techniques
discussed in the previous Sections, combined with some of the path planning primitives described in Chapter 11.
The target system is the mobile robot LiAs (Fig. 9.1), that uses ultrasonic and laser range sensors to measure
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Figure 12.5: Result of dead reckoning navigation based on proprioceptive sensors only (i.e., encoders and gyro-
scope). The uncertainty increases along the path. The line segments sensed during the motion are matched in a
least-squares sense with the a priori map of the room. (Figure courtesy of J. Vandorpe.)

the distance to obstacles, and its wheel encoders and gyroscope to perform the proprioceptive dead reckoning
(Sect. 9.7.1).

Dead reckoning through sensor fusion

LiAS uses Kalman filter techniques to fuse the motion information generated by (i) its encoders, and (ii) its
gyroscope. The (change in) orientation information coming from both sources is weighted according to the
covariance on both signals. If, however, the gyroscope’s resolution is far higher than the resolution from the
encoders, it’s easier (and better) not to fuse the “bad” data from the encoders with the “perfect” data from the
gyroscope: just use the gyroscope data as only measurement.

Low-level filtering on obstacle detection

The ultrasonic sensor and the laser range scanner both give information about in which direction and at what
distance obstacles are detected. Again, Kalman filter techniques fuse the information from both sources. Fig-
ure 12.3 shows the result, on a scan of one room in the PMA lab. The map is discretised in cells of a given length,
and each cell contains a number representing the probability that an obstacle is present in this cell. This data
is then thresholded, such that a “black-and-white” picture of the room remains: black means “obstacle,” white
means “free space” (Fig. 12.4). The threshold is a parameter that the user must tune.

The following step in the filtering is the fitting of simple geometric features (lines and circles) to the thresholded
bitmap. Figure 12.5 shows the result of all the previous low-level filtering steps, collected during a closed trajectory
of the mobile robot, and overlayed on a known a priori map. The Figure makes clear that the line fitting becomes
less accurate in the regions where the robot has less accurate information about its own pose in the room. This
uncertainty increases along the motion of the robot, since the dead reckoning alone generates inevitable drift.

213



.

.

position uncertainty

end
position

start

ellipsoid
beacons

scan line

Figure 12.6: Result of navigation with recalibration based on fixed beacons. Whenever the robot is able to see
beacons in its environment (and is able to match them with its a priori map) it can reduce its position uncertainty.
This is reflected by the covariance ellipses shown in the picture. (Figure courtesy of J. Vandorpe.)

LiAS uses a second source of geometric information: at known positions in the room highly reflective strips
are attached to the walls; the laser scanner can easily detect these strips, and hence has a number of directions
in which it sees these beacons.

Matching with a priori map

The geometric features found by the low-level filtering procedures contain all information (lines, directions to
beacons) that is available on line. If accurate off-line maps are available, the robot can (should) use this information
to recalibrate its position and orientation in the room. This calibration is done by matching the sensed geometric
features with lines in the a priori map. Such matching is commonly implemented as a least squares procedure
(hence, Kalman filters could be used to do the job). Figure 12.6 shows a really executed motion of LiAS through
the PMA lab, avoiding obstacles, recalibrating its absolute pose by means of sensed beacons or matched line
segments.
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Reactive planner for obstacle avoidance

The previous paragraphs dealt with how to process the raw sensor signals in order to be able to make a map of
the environment, and to adapt it to any changes that occur. However, the frequency with which the maps can be
updated and an adapted motion can be calculated is still too low to react to sudden changes in front of the moving
vehicle. Hence, some sensor processing has to be present to make the robot react safely to these situations. LiAS
has been given a rule-based fuzzy controller to do the job: the raw sensor data are given to the fuzzy controller,
who reacts to them with a high bandwidth, using a set of user-specified rules (e.g., “Reduce speed if obstacle
comes nearer”). Figure 12.7 shows the controller in action, while bringing the robot (autonomously!) out of a
dead-end trap.

.

.

Figure 12.7: The reactive obstacle avoidance fuzzy controller makes the mobile robot escape from a trap obstacle.
(Figure courtesy of J. Vandorpe.)

12.4 Map navigation

The previous Section used the Kalman Filter to estimate the state of a system, and to track its evolution. The
basic assumptions are that (i) the state doesn’t change too fast, and the system is a Markov process (i.e., the
current state contains all information collected in the past). This Section treats the case that states do change
drastically, but within a given set of possible alternatives; the following Section treats the most complicated case,
i.e., a Markov process model is a bad model for the system under observation.

This Section is titled “map navigation,” although the problem is more general than that of a mobile robot
that has to find its way in a given map, as well as to estimate its current position within this map, e.g., [7]. Other
examples are:

• Monitoring a force-controlled assembly task, Figs 12.8 and 12.9, [16]. The different possible contact situations
are known, but the controller doesn’t know in advance which sequence of contacts it will encounter, and
what the exact contact geometry will be. However, the task has been executed several times already. From
this “learning phase,” two important sets of probability distributions have been derived: (i) the transition
probabilities from one state to a set of other states; and (ii) the typical measurements corresponding to each
contact situation.

• Distance sensing based object recognition and matching, [9]. A robot moves an ultrasound sensor over an
object, and detects where its boundaries are. These measurements are compared to a set of given geometrical
models. Each of the models can be given some a priori “weight.”
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The basic Bayesian algorithm used for this kind of applications is the Baum-Welch algorithm for Hidden Markov
Models, [4, 5, 20, 23]. It is a mixed discrete-continuous model, where the discrete “hidden” variable represents
which state/model the system is in, and the continuous variables model the measurements in that state. The
estimations are then performed by maximizing the likelihoods of the data given the models.

Figure 12.8: Force-controlled assembly task. (Figure courtesy of B. McCarragher.)

12.5 Map building

Kalman Filtering is the simplest level of “intelligent” control: the “map” is given (it consists of only the one
object that the filter has to track), and the estimation can be done recursively. The Hidden Markov Model
algorithm is one level more complicated: the controller has to find its current position in the map itself. But the
job can become even more difficult when the robot has to make its map itself. A nice example of map building
by a mobile robot is described in [30, 31, 32]. These references use the EM algorithm, [2, 11, 20, 27]. This is an
iterative, two-step algorithm:

Expectation step. Given the last estimate of the map, what are the (maximum likelihood) estimates of the
position of the robot during all its previous measurements. The position estimates are functions of the
statistical parameters that describe the last estimate of the given map.

Maximization step. Given the last estimates of the robot positions, found in the E-step, what are the (maxi-
mum likelihood) estimates of the statistical parameters describing the map.

This iteration is executed until convergence. The “position measurements” used in the EM algorithm correspond
to “landmarks.” The map is represented by assigning probabilities to each cell in a discretized grid of the
environment; the probability of a cell reflects the number of times a landmark has been observed in that cell.
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Figure 12.9: Different contact situations in the force-controlled assembly task of Fig. 12.8. (Figure courtesy of
B. McCarragher.)

We don’t give the details of the Bayesian probability calculus that lies behind this EM algorithm. The
calculations are not really very advanced (i.e., they rely on nothing more complicated than Bayes’ rule), but they
are quite lenghty. The interested is referred to the cited references. However, note that using an exponential
family of probability distributions makes the M-step much simpler than in the case of general distributions. Note
also that this map building task cannot be described by a Markov process: the position estimates in the past will
be updated whenever the map is updated! Figures 12.11-fig-sensproc-Thrun2 show the estimated map, and the
estimated position of the robot in the map, at two steps in the EM algorithm. In the first Figure, the map has
not yet been estimated correctly; in the second Figure, the estimates have converged.
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Chapter 13

Motion and force control

The focus in this Chapter is on motion and force control of serial chains of rigid bodies, since (i) parallel robots
can be approximated as one single moving rigid body (the “legs” are relatively light, and the motors are fixed to
the base), and (ii) mobile robots must seldom move in contact with the environment, or at speeds where their
dynamics become dominant. Even then the most important dynamic effects (deformations of the tires and the
suspensions) are very nonlinear and hence not faithfully described by the dynamic model of a kinematic chain of
rigid bodies.

The Chapter consists of two main parts: the first Sections present the most common free space controllers
(i.e., when the robot is not in contact with the environment); the following Sections explain how to extend these
controllers in order to deal with contacts. This Chapter looks at the servo control level only, i.e., the feedback
loops are closed around the sensor signals without any higher-level “intelligent” sensor processing techniques. Of
course, both control levels are complementary; the servo routines typically run at a much higher frequency than
the high-level feedback loops.

Section 13.1 repeats some basic properties of first and second order dynamical systems: time constant, natural
frequency, damping. These suffice to understand all control algorithms discussed in this Chapter.

Sections 13.2–13.4 describe the most common free space motion controllers. Their purpose is to generate
actuator commands that make the robot follow the desired position, velocity, and/or acceleration as accurately as
possible. These desired motions can be defined in Cartesian space, or in joint space; the transformations between
both spaces are given by the kinematic routines presented in earlier chapters.

If the robot is in contact with the environment, the contact reduces the robot’s motion degrees of freedom
and generates reaction forces. Hence, the controller must be extended with a force control loop. Force control is
classified into two categories: passive force control (Sect. 13.5.1) and active force control; active force control, in
turn, has two major paradigms: hybrid control (Sect. 13.6) and impedance control (Sect. 13.7).

Basic ideas of this Chapter Controlling the motion of a robot in free space is done by either analog (and
hence high-bandwidth) velocity feedback loops, or by a digital controller using the robot’s dynamic equations as
acceleration feedforward and/or linearizing feedback. The former are decoupled (decentralized, independent) and
hence much simpler and faster than the centralized approach based on a dynamic model.
A robot that is constrained in its motion, is controlled in either the hybrid control paradigm, or the impedance
control paradigm.
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13.1 Control theory basics

This Section gives the basic concepts of the theory of linear dynamical systems, i.e., systems whose evolution in
time is described by ordinary differential equations (ODE) of the following form:

an
dny(t)

dtn
+ · · · + a1y(t) + a0 = bm

dmx(t)

dtm
+ · · · + b1x(t) + b0. (13.1)

x(t) is the system input (or independent variable), and y(t) is the system output (or dependent variable).

13.1.1 Second-order systems

The most complicated ODE that will be used in this Chapter is the dynamic relationship between the joint forces
and the end-effector motion:

M(q) q̈ + c(q̇, q) + g(q) = τ . (13.2)

This equation is of second order, with only a zero order “driving” term on the right-hand side. Note that it is
a vector equation, i.e., it contains a vector of dependent variables q. One-dimensional second-order systems are
usually written in the following standard form:

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = 0. (13.3)

The physical interpretation of ωn (“natural frequency”) and ζ (“damping ratio”) is shown in Fig. 13.1: ωn

determines the number of oscillations per unit of time, and ζ determines how fast the oscillations die out.
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Figure 13.1: Response of a second-order dynamic system to a unit step. A higher natural “frequency” ωn reflects
a faster response of the system; the response curves have smaller oscillations if the damping ratio ζ is higher.
There is no overshoot if ζ ≥ 1 (ζ = 1 corresponds to “critical damping”).
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13.1.2 First-order systems

First-order dynamic systems will also appear in this Chapter. Their standard expression is

ẏ(t) +
1

τ
y(t) = 0. (13.4)

Their time evolution is completely determined by the time constant τ , Fig. 13.2.
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Figure 13.2: Response of a first-order dynamical system to a unit step. The figure shows two ways to deduce the
system’s time constant τ .

13.1.3 Control

Figures 13.1 and 13.2 show the “open loop” time evolution of first and second order systems, i.e., the input to
the system (just a step in the above-mentioned Figures) is not changed as a function of the current state of the
system. The goal of control is to make the input dependent on the state, in order to adapt the “closed-loop”
behaviour of the system to the user-defined goals. “Closed-loop” means that the “x” steering input in Eq. (13.1)
is calculated as a function of the “y” state, which in turn changes this state, which in turn changes the input,
and so on. Feedback is the name of the control action that depends on the current measurements performed
on the system: a control action is generated based on the error between the desired motion and the current
measurements of position and velocity. Feedback changes the natural frequency, damping ratio, and/or time
constant. Feedforward is the name of the control action that uses the desired motion of the system, together with
its dynamical model (“inverse dynamics”), to calculate which forces are required to realize this motion; hence, it
allows to avoid errors, and also to linearize the system dynamics (Sect. 13.4). Feedforward does not change the
natural frequency, damping ratio, and/or time constant. The use of feedback and feedforward will become clear
in the following Sections. However, the design of controllers is beyond the scope of this text; see, for example,
[7, 10, 25].
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13.2 One-dimensional motion control

The motion control of a single mass, along one translational degree of freedom, is the simplest control problem,
but it illustrates all fundamental ideas that are needed in this Chapter: feedback and feedforward, error dynamics,
choice of control parameters, influence of disturbances.

13.2.1 System

Figure 13.3 shows the “robot,” as well as the block diagram representing its dynamics, i.e., Newton’s law of
motion f = mẍ. The system is assumed to be ideal : no friction, and the force does not deform the rigid body.xmF _x�x R R x1mF
Figure 13.3: One-dimensional “robot.” Left: the force F moves the mass m in the x-direction. Right: system
model of Newton’s law of motion.

13.2.2 Classical (“PID”) control

Figure 13.4 shows the classical approach towards controlling the system of Fig. 13.3. The actual and desired
positions x and xd are compared, and their difference (the position error e) is multiplied by a (constant, but not
physically dimensionless!) “proportional control gain” kp in order to define the force Fact that the actuator has
to deliver to the moving body.

kp
kv

�xd

_xd
xd+

+
+ �

�
++ + xFa
tbm R R_x�x1m SYSTEM

Fdist
_e

e

Figure 13.4: One-dimensional motion control. The desired acceleration ẍd serves as a feedforward input; m̂ is the
estimated mass of the controlled body. Many controllers don’t use the desired velocity and acceleration inputs.

The control gain is called “proportional” (the “P” part of the term “PID” in the title of this Section) because
the result of the control action is proportional to the position error. The “D” stands for “derivative”: kv is the
control gain that generates an actuator force (in addition to the one generated by the position control) from the
velocity error ė = ẋd− ẋ, i.e., the derivative of the position error. Older robots have a tachometer on each joint, to
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measure the instantaneous velocity ẋ ; modern robots use only position measurements and calculate the velocity
by numerical differentiation.

P and D control gains are not sufficient to assure zero errors: any disturbance acting on the system (e.g.,
due to friction) is counteracted only after an error has occurred. A constant disturbance, such as a constant
Coulomb friction term, results in a steady state error. A steady state error can be avoided by adding an integral
control term (the “I” part of “PID”): it multiplies the integral of the position error with an “integral gain ki” and
adds the result to the actuator force. However small the error is, adding an actuator force proportional to the
integral of that error will eventually be sufficient to make the system move in the direction that reduces the error.
Note, however, that adding the integration makes the closed-loop system into a third-order dynamical system,
for which no intuitive parameters such as natural frequency, damping or time constant exist. The control scheme
in Fig. 13.3 does not include an integral feedback term, and also in the sequel integral feedback will be omitted
for simplicity.

The “PID” control of the previous paragraphs is purely a feedback control: the controller generates actuator
forces only after an error has occurred. Avoiding those errors can only happen through feedforward control: the
robot uses the “inverse dynamics” model to estimate in advance what forces it will require at its motors in order
to give the mass of the robot the desired motion. In the one-dimensional case, the inverse dynamics model is
simply the estimated mass m̂.

13.2.3 Choosing control gains

The following closed-loop relationship follows immediately from Fig. 13.4 (if no disturbance force appears, and
no desired velocity and acceleration inputs are used):

mẍ = kp(x − xd) − kvẋ, or mẍ + kvẋ + kpx = kpxd. (13.5)

Comparison with the standard-form equation (13.3) yields the following natural frequency and damping:

ωn =

√
kp

m
, ζ =

1

2

kv√
kpm

. (13.6)

The kp and kv control gains must be chosen very carefully, keeping in mind the trade-off between stability of
the system on the one hand, and dynamic closed-loop performance on the other hand. kp should be as large as
possible, in order to increase the bandwidth (“natural frequency”) of the closed-loop control system; however,
ωn should be significantly smaller than the mechanical natural frequency of the robot, or else it will make the
system vibrate. kv should then be chosen such as to keep ζ between 0.7 and 1.0 (“critically damped”), Fig. 13.1.
The physical interpretation of the control gains kp and kv also follows from Eq. (13.5):

• In steady state, i.e., when all transients have died out and hence all time derivatives are zero, Eq. (13.5) reduces
to kp(xd − x) = Fdist, where Fdist is a static disturbance force. Hence, kp has the dimensions of a stiffness, and
hence it is often called servo stiffness.

• Similarly, if kp = 0, then in steady state Eq. (13.5) reduces to kvẋ = Fdist. kv is seen to have the dimensions
of a mechanical damping; hence, it is often called servo damping.

13.2.4 Error dynamics

Figure 13.4 shows that the total control signal is:

Fact = m̂ẍd + kv(ẋd − ẋ) + kp(xd − x). (13.7)
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This Fact acts on the system with mass m. Assuming that m̂ = m, the following linear second-order differential
equation in the error e = xd − x results:

më + kv ė + kpe = 0. (13.8)

This means that (i) the error has the same dynamics as the system in Eq. (13.5), and (ii) the control gains kp and
kv depend on the mass m for a given choice of bandwidth ωn and damping ratio ζ. If the actuator force doesn’t
completely cancel the dynamics of the controlled system because a disturbance force Fdist acts on the system, the
steady state error is

ess = −Fdist

kp
. (13.9)
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Figure 13.5: One-dimensional motion control with the “dynamic model” in the control loop.

13.2.5 Dynamic model in the loop

In order to make the control constants kp and kv independent of the body’s mass, the “dynamic model” (i.e., the
estimated mass m̂) has to be brought into the control loop, Fig. 13.5. The control gains and error dynamics are
found in completely the same way as in the previous Section. This yields a mass-independent result:

ë + kv ė + kpe = 0, (13.10)

ωn =
√

kp → kp = ω2
n, (13.11)

ζ =
1

2

kv√
kp

→ kv = 2ζ
√

kp. (13.12)

The steady state error [cf. Eq. (13.9)] is

ess = −Fdist

mkp
. (13.13)

13.3 Velocity resolved control

The previous Section dealt with the one-dimensional motion of one single rigid body. Robots, however, consist of
multiple rigid bodies. The simplest approach to this multi-body motion control problem is to consider each joint
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as one rigid body, independent of the other joints. That is, one neglects the coupling effects of the motion of the
other links and joints. Figures 13.6 and 13.7 show the resulting controllers, in the single and multiple degrees of
freedom cases, respectively.

The inner velocity feedback loop is usually implemented in analog hardware, whose high bandwidth reduces
the coupling effects between different joints. In the ideal case, the inner loop controls the physical system in such
a way that the measured output q̇ of the inner loop equals the desired input V q coming from the outer loop. That
is, the dynamics of the inner loops can be neglected. The outer position feedback loops are digital controllers.
Because the outer loop steers the inner feedback loop with velocity signals, this control scheme is often called
velocity resolved or rate resolved control, [22, 39, 40, 41]. Another name is decentralized control, because joints
are treated independently.

The error equation is again straightforward from the control schemes. For example, the dynamic behaviour
of the error ei = qi,d − qi of the control scheme in Fig. 13.6 is given by the following first-order dynamic system:

ėi + kpi
ei = 0. (13.14)

Its time constant is τ = 1/kpi
. Hence, the dynamics fo the closed loop system are completely governed by the

position feedback constant.

-+
PI 1mii R R�q _q qi�dist,i

kpi
+ +--++ �i_qi;d

qi;d
Vq

Figure 13.6: Independent joint position control (single degree of freedom case).

13.4 Acceleration resolved control

This method (Fig. 13.8) relies on the knowledge of the complete dynamic model for the robot, as given in
Eq. (13.2). Figure 13.8 (Cartesian space) and 13.9 (joint space) show that the errors on position and velocity
level are transformed into a feedback at the joint acceleration level. Therefore, these methods (for free space
as well as constrained motion) often go under the name of acceleration resolved methods, [20, 23]. The major
features of this control scheme are:

• The coupling between the different links is explicitly taken into account by one single module, i.e., the inverse
dynamics (“ID”) of the robot. (Therefore, acceleration resolved control is often also called computed torque
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Figure 13.7: Independent joint position control (multi-degree of freedom case).
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Figure 13.8: Cartesian-space motion control scheme with full dynamic model in the control loop.

control, or centralized control.) The ID module uses the estimated parameters M̂ , ĉ and ĝ. If these parameters
are correct, the acceleration resolved approach gives very small tracking errors. Anyhow, it requires a high-
quality identification of the dynamic parameters (e.g., [36]), and a powerful control computer. Extensions
to the presented control scheme adapt the estimates of the dynamic parameters on line, as well as the gain
matrices. These advanced controllers are called adaptive controllers, [3, 34].

• The inverse acceleration kinematics (“IAK”) are needed, to transform the desired acceleration ax (after control)
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Figure 13.9: Joint-space motion control scheme with full dynamic model in the control loop.

into the corresponding accelerations of the joints, aq.

• The result of a good working “inner loop” (between ax on the one hand, and the joint positions q and joint
velocities q̇ on the other hand) linearizes the “system”: the actual acceleration ṫ

ee
equals the acceleration ax

desired by the output of the “outer loop,” i.e.,

ṫ
ee

= ax, (13.15)

which is a linear ODE. This approach of turning a nonlinear physical system into a linear closed-loop system
is called feedback linearization, [15, 24].

The outer loop must now cope with an (almost) linear system only. It uses simple position feedback: the
position error vector e = td,d − tee

d is multiplied by the control gain matrix Kd, and results in a Cartesian
acceleration. (The first subscript “d” in td,d and tee

d indicates that the twists are to be interpreted as finite
displacement twists; the second “d” stands for “desired.”) The controllers also use velocity feedback (via Kv),
and sometimes they use acceleration feedforward.

• The computational load of using a full dynamic model in the inner control loop is high. But, since parameters
such as the Jacobian matrix and the mass matrix do not change much in the small period (typically 10−4

second) between two control instants, some controllers take the nominal (“desired”) joint values as inputs for
the dynamic model and/or re-calculate the inverse dynamics less frequently.
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Fact-to-Remember 67 (Summary of motion control schemes)

decentralized centralized centralized
(joint space) (Cartesian space)

computational
complexity

+ − −−

high speed
performance
(dynamics!)

0/− + +

low speed
performance
(friction!)

+ 0/− 0/−

• The control gain matrices are usually chosen diagonal. This means that all directions (i.e., the different
components of either the Cartesian end-effector twist or the joint velocity vector) are decoupled. Of course, this
decoupling holds only in the ideal case. Non-ideal effects (e.g., disturbance forces, such as friction; inaccurate
dynamic or kinematic parameters) cause coupling between the different directions.

• The position error is now a vector equation, which one finds in the same way as in the one-dimensional case:

ë + Kvė + Kpe = −M−1τ dist. (13.16)

Hence, the steady state error [cf. Eq. (13.9)] becomes:

ess = −(MKp)
−1τ dist. (13.17)

13.5 Active and passive force feedback

Robots of the first generations were conceived as positioning devices that operate in “open loop,” i.e., with little
or no feedback at all from the process in which they participate. For high-accuracy assembly tasks, this implies
that (i) the motion control of the robot must be accurate, and (ii) all parts or subassemblies have to be preposi-
tioned (“fixtured”) with a high accuracy. Accurate fixturing requires expensive and rather inflexible peripheral
equipment. Providing robots with sensing capabilities can reduce these accuracy requirements considerably. In
particular, for industrial assembly, force feedback is extremely useful (Sections 13.6 and 13.7): the measured force
gives the robot controller information about how the environment constrains the end-effector’s motion, such that
it can adapt the current motion set-points. But also for other tasks, in which a tool held by the robot has to
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make controlled contact with a workpiece (deburring, polishing, cleaning, or sensor-based modelling of the envi-
ronment), it is not a good idea to fully rely on the positioning accuracy of the robot, and force feedback or force
control becomes mandatory. Many non-contact tasks also require sensor feedback, in order to avoid undesired
collisions between end-effector and environment and/or to keep the end-effector in a specified relative position and
orientation with respect to the environment. These distance control tasks can be framed into the above-mentioned
force control framework: distances (and their time derivatives) are transformed into virtual forces, by multiplying
them by virtual stiffness, damping and/or inertia matrices.

13.5.1 Passive force control

In passive force feedback, the trajectory of the robot end-effector is modified by the interaction forces due to the
inherent compliance of the robot. The compliance may be due to the structural compliance of links, joints and
end-effector, or to the compliance of the position servo. Passive force feedback needs no force sensor, and the
preprogrammed trajectory of the end-effector is never changed at execution time: the target assembly position
is assumed to be more or less known, such that the compliance will absorb any small misalignments that might
(and in practice will) occur during the execution of the task. Programming the task consists of

1. Specifying a nominal position trajectory, during which the robot will be in contact with the environment without
generating excessive forces in the inherent compliance. This is a software design process.

2. Adjusting the impedance of the compliance (i.e., the mechanical poperties of the compliance: number of degrees
of freedom, inertia, stiffness and damping) to the task, [30, 35]. This involves a hardware design.

Since the peg-in-hole type of task is so common in assembly, robot tool manufacturers sell compliances for these
tasks. These devices are known under the name of RCC, or Remote Centre Compliance, [6, 8, 43]: they support
the peg in such a way that the tip of the peg is a mechanical centre of compliance, i.e., forces through this centre
are taken up by translations along the same direction as the force, and similarly for torques. This means that
the RCC is a passive implementation of the task frame specification of the peg-in-hole task Some remarks about
RCCs:

1. Passive compliances can take up only small uncertainties in position and orientation. (No absolute quantifica-
tion of the word “small” exists, though.)

2. They react instantaneously, i.e., much faster than active repositioning by a computer control algorithm based
on measured forces.

3. In general, a mechanically compliant element does not possess a so-called centre of compliance, [2, 18, 19, 27, 26],
i.e., no reference frame exists in which the stiffness or compliance matrices are diagonal.

4. RCCs lack flexibility, since for every robot task a special purpose compliant end-effector has to be designed
and mounted.

5. Since no forces are measured, an RCC can neither detect nor cope with error conditions involving excessive
contact forces, and it is not a guarantee that high contact forces will never occur.

13.5.2 Active force control

In active force feedback, the interaction forces are measured, fed back to the controller, and used to modify
on-line the nominally specified trajectory of the robot end-effector. Active force feedback has an answer to all
above-mentioned disadvantages of passive force feedback, but it is usually slower, more expensive, and more
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sophisticated. Apart from a force sensor, it also requires an adapted programming and control system. In
addition, it has been shown [5] that, in order to obtain a reasonable task execution speed and disturbance
rejection capability, active force feedback has to be used in combination with some degree of passive force feedback:
feedback, by definition, always comes after a motion or force error has occurred, hence some passive compliance
is needed in order to keep the reaction forces below an acceptable threshold.

Joint space controllers, or Cartesian controllers with much less than six degrees of freedom were developed
first, e.g., [28, 29, 31, 42]; full Cartesian control schemes followed soon, [4, 12, 17, 33]. “Cartesian” means that
end-effector motions and forces are specified and controlled, not joint motions or torques. Of course, the controller
eventually transforms the results of the Cartesian control into joint torques, but the user need not bother about
these kinematic transformations. The active force feedback literature mainly works with one of the following two
motion constraint models:

1. Robot and environment are perfectly rigid, and the interaction between both is geometric, i.e., the robot can
move along the environment without deforming neither the environment nor itself.

2. Robot and environment are perfectly rigid, and the interaction between both is “soft.” Most often, the in-
teraction is modelled by a mass–spring–damper system, with the extra simplifying assumptions that (i) the
compliance is linear, and (ii) all compliance in the system (including that of the manipulator, its motion control,
the force sensor and the tool) is localized in the environment.

These two different motion constraint models have given rise to two different control “paradigms”: hybrid control
(Sect. 13.6) for the “geometric” interaction model, and impedance control (Sect. 13.7) for the “soft” interaction
model.

13.6 Hybrid control

Hybrid control (or “hybrid force/position control”) is the Cartesian control approach that corresponds most
closely to the “Compliance Frame” (or “Task Frame”) task specification tool, [1, 21], because that also models
the motion constraint as completely rigid. The six motion degrees of freedom of the robot end-effector are split
into a number nv < 6 of position or velocity-controlled degrees of freedom, and nf = 6−nv force-controlled degrees
of freedom. Most papers on force control say that these force- and velocity-controlled directions are “orthogonal.”
But “orthogonality” is not the correct property, since twists and wrenches belong to physically different spaces,
[9]. The appropriate concept is reciprocity : an (ideal) contact wrench on the end-effector is reciprocal to any of
the possible end-effector twists allowed by the constraint, if moving the end-effector against the wrench requires
no power.

13.6.1 System

The robot system to be moved is the same as in the case of free space motion control, but now the actuated
force also has to counteract the reaction wrench generated in the robot-environment interaction. Although hybrid
control uses the simplification of a rigid, geometric constraint model at the task specification level, at the force
control level it uses a “soft” interaction model. Both systems (robot and interaction) are assumed to be ideal :
no friction, and the force does not deform the rigid body. This leads to the following extension of the general
dynamic equation for an unconstrained robot, Eq. (13.2):

M(q) q̈ + c(q̇, q) + g(q) + (∆̃J)T wee = τ , (13.18)

where the influence of the reaction wrench at the joints is found from the “Jacobian transpose” relationship.The
Cartesian wrench wee is determined by the dynamics of the motion of the robot arm, and by the contact force.
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Note that the geometric contact model cannot make distinction between static contact forces, and forces generated
by damping or inertia; the control loop itself will take into account the contact impedance, although usually only
the compliance part (i.e., the robot-environment interaction is a pure spring).

Fact FekeFdistm | {z }| {z }robot modelcontact
x xe

Figure 13.10: Mass–spring model of a one-dimensional force-controlled “robot.” The force is controlled in the “left-
right” direction; velocity in controlled in the “up-down” direction. The spring is infinitely stiff in the “geometric”
constraint model. Fe is the contact force generated by the environment; Fdist is any non-modelled extra force
(e.g., friction); it can occur in the force-controlled direction, as well as in the velocity-controlled direction.

13.6.2 One-dimensional force control

The motion and force control of a single mass, along one translational degree of freedom, is the simplest possible
force control problem. As was the case with the one-dimensional motion control, it illustrates the fundamental
idea: a force error in a force-controlled direction is translated into a motion that interacts with the robot-
environment mass–spring–damper in such a way as to reduce the force error. In the simplest model, this robot-
environment impedance is only a spring; this simplification is often quite accurate, because, almost by definition,
the robot moves only slowly when in contact with the environment.

System. The dynamics of the one-dimensional system in Fig. 13.10 are given by

mẍ = Fact − Fdist − Fe, (13.19)

under the assumption that the environment doesn’t move, i.e., ẋe = 0. Fe is the force generated by the mass–
spring–damper system that models the contact interaction.

Control. The one-dimensional force control scheme is given in Fig. 13.11. The “robot” dynamics are modelled
by a mass m̂, and the robot-environment interaction by a spring with spring constant k̂e. The interaction force
Fe is found as the deformation of the real interaction compliance ke: Fe = ke(x− xe). The dynamics of the force

error ef = Fd − Fe are straightforwardly derived, under the assumption that the modelled dynamics (k̂e and m̂)
are equal to the real dynamics (ke and m):

ëf + kvf ėf + kpf ef = 0, (13.20)

or, in case of a disturbance

ëf + kvf ėf + kpf ef =
Fdist

mk−1
e

. (13.21)

232



R R�x _x x� 1m + �xeFdist
+�
kvf

+++ + + Fe+ keFact

+ � �+Fd_Fd

�Fd
ddt

bm
kpf kvf

bke�1 SYSTEM

Figure 13.11: One-dimensional force control scheme, when the robot-environment interaction model is a spring
with (modelled) stiffness k̂e.

Again, this is a second-order system, whose control constants are chosen in a way similar to the motion control
case. The steady state error ef,ss is found from Eq. (13.21) by putting all time derivatives to zero:

ef,ss =
Fdist

mkpf k−1
e

. (13.22)

Hence, disturbance forces are “attenuated” by (i) the controller (kpf ), (ii) the system dynamics (m), and (iii) the
interaction dynamics (ke).

The control scheme contains the derivative of the measured force, but because force measurements tend to be
quite noisy, this derivative is most often not used. Some implementations replace it by ke(ẋ− ẋe), but the quality

of this “observed” force derivative relies on two assumptions: (i) the environment doesn’t move, and (ii) ke = k̂e.
Also the derivatives of the desired forces, Ḟd and F̈d, are most often not used.

13.6.3 Cartesian force control–Acceleration resolved

This Section discusses full six-dimensional hybrid force/position control, for both rigid (Fig. 13.12) and soft (i.e.,
purely spring-like, Fig. 13.13) robot-environment interactions. The major differences with the one-dimensional
case are:

• As in the motion control case, there is an inner control loop that linearizes the system: it makes sure that
the outer loop can assume that it works with a system whose dynamics are “infinite,” i.e., ṫ = ax, with ṫ

the actually executed end-effector acceleration twist, and ax the end-effector acceleration twist desired by its
controller.

• The inverse acceleration kinematics (“IAK”) are used to transform all forces and motions between the joint
space (where the actual actuation takes place) and the Cartesian space (where the end-effector moves and
makes contact with the environment).

• The end-effector’s six motion degrees of freedom are divided into a number of velocity-controlled degrees of
freedom, and a number of force-controlled degrees of freedom. The sum of both numbers is 6.
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• Both velocity-controlled and force-controlled subspaces have a set of basis screws, collected in the matrices
Sx and Sf , respectively. All desired quantities (motions and forces) are specified by giving coordinates in
these bases: φd for desired forces, and χd for desired velocities. All measured quantities (which are six-
dimensional!) are projected onto their corresponding coordinate subspaces by the pseudo-inverses S†

x (for the

velocity-controlled subspace) and S
†
f (for the force-controlled subspace). Recall that these pseudo-inverses are

not uniquely defined.

• The control gain matrices are not six-dimensional, but have dimensions corresponding to the dimension of the
subspace on which they act. Note that the control takes place on the coordinates, and not in the force- or
velocity-controlled subspace itself.

Figures 13.12 and 13.13 show the control schemes, for rigid and soft robot-environment interactions, respectively.
Note that the environment is always assumed to be constant, i.e., the bases of the force- and velocity-controlled
subspaces do not change over time.
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Figure 13.12: Cartesian hybrid force/position control scheme, when the robot-environment interaction is modelled
as fully rigid.

Rigid environment. A completely rigid robot-environment interaction (Fig. 13.12) is, of course, an idealiza-
tion. However, it can be a useful approximation in case the forces in the force-controlled subspaces are only
“controlled” via feedforward. That is, the desired contact wrench wee

d is calculated from the specification of the
corresponding coordinates φd, and introduced as such in the inverse dynamics routine of the inner control loop.

The motion in the velocity-controlled directions control follows the same principles as in the motion control
case: the errors are multiplied by control gain matrices. Choosing diagonal gain matrices decouples the control
between the different base twists or wrenches (under the assumption of small disturbances, accurate models, and
a high-bandwidth inner loop). Each decoupled direction will give a second-order system, with classical control
design.

Soft environment. In this case, the robot-environment interaction is a spring with stiffness matrix Ke, which

is approximated in the model by a matrix K̂e. The differences with the rigid interaction case are:
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Figure 13.13: Cartesian hybrid force/position control scheme, when the robot-environment interaction is modelled
as spring-like, with stiffness matrix Ke.

1. Force feedback control is now possible in the force-controlled subspaces, since forces can be regulated by con-
trolling the deformation of the interaction spring.

2. The “system” is extended with the relationships between (i) the stiffness matrix Ke of the interaction spring,
(ii) its deformation t∆ (which is the difference between the end-effector twist tee and the environment twist

te), (iii) the force-controlled subspace (on which the matrix P f = SfS
†
f projects the measured end-effector

wrench), and (iv) the forward velocity kinematics of the robot (modelled by the Jacobian matrix J).

13.6.4 Cartesian force control–Velocity resolved

Again as in the free space motion control case (Sect. 13.3), the inner loop can be implemented as an analog
velocity controller, Fig. 13.14. The advantages of the velocity resolved control approach are still valid. And in
many respects even more so than in the free space motion case: motion in contact implies slow motion and much
friction, and this are exactly the two aspects in which the velocity resolved approach excells.

13.7 Impedance control

The impedance control approach, [13, 16], differs from the hybrid approach, both in task specification and in
control:

1. Task specification. Hybrid control specifies desired motion and force trajectories; impedance control, specifies
(i) a nominal motion trajectory (i.e., the desired motion if the environment would be perfectly known), and (ii)
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Figure 13.14: Cartesian hybrid force/position control scheme, when the inner loop is implemented as an analog
velocity controller.

a desired dynamic relationship between, on the one hand, the deviations from this nominal trajectory (caused
by the contact with the environment), and, on the other hand, the forces exerted by the environment:

w = −Md ṫ + Cd t̃ + Kd

∫
t̃ dt. (13.23)

t̃ is the Cartesian error velocity twist, i.e., the difference between the prescribed velocity td and the measured
velocity t; ṫ is the Cartesian acceleration twist; Md, Cd and Kd are user defined inertia, damping and stiffness
matrices, respectively. (Note that the integral in Eq. (13.23) is in fact only defined if the position errors are
always small, and can hence be described by infinitesimal twists.)

Compared to hybrid force/position control the apparent advantage of impedance control is that no explicit
knowledge of the constraint kinematics is required. However in order to obtain a satisfactory dynamic behaviour,
the inertia, damping and stiffness matrices have to be tuned for each particular task. Hence they embody
implicit knowledge of the task geometry, and hence task specification and control are (again) intimately linked.

2. Control. For control purposes the dynamic relationship in Eq. (13.23) can be interpreted in two ways. In the
first way, it is the model of an impedance, i.e., the robot reacts to the “deformations” of its planned position
and velocity trajectories by generating forces. Special cases are stiffness control, [33], where Md = Cd = 0, and
damping control, where Md = Kd = 0. Stiffness control is quite popular in robot hands: the fingers squeeze
the grasped object, and give way to disturbing motions of the objects as if they were pure springs.

Equation (13.23) can also be interpreted the other way around as an admittance, i.e., the robot reacts to the
constraint forces by deviating from its planned trajectory as if it were a rigid body with the dynamic behaviour
prescribed by Eq. (13.23).
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Examples of impedance/admittance controllers can be found, among many others, in [11, 14, 32, 37, 38].
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Theorem, 37, 46
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great, 41
circular
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Clifford, William Kingdon, 47
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321 design, 139
inverse kinematics for serial
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singularity detection, 116

closed-loop
control, 232
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common normal, 44
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commutation
translation and rotation, 47
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composition of velocities is ∼,
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commutator, 158
of finite displacements, 32
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translation and rotation, 27
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of model, 24

compliance, 38, 155
centre of ∼, 240
frame, 206, 241
in passive force control, 240
remote centre ∼ (RCC), 240
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pose, 80
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of rotations, 57
of rotations about moving
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control, 236
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probability distribution, 215

conditional independence, 13
confidence level, 221
configuration, 97, 109, 140

321 serial arm, 112
backward, 110
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elbow up, 111
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forward, 110
no flip, 111
parallel robot, 137
singular, 115
space, 147, 188, 201

conservation
angular momentum, 165
linear momentum, 162

conservative
force, 182

constant
time ∼ (τ), 232

constrained
optimization, 120
rigid body, 38
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damping, 38
dynamic, 123
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parameter ∼, 45
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impedance, 123
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method, 110

continuous group, 29
control, 230, 232
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bang-bang control, 197
centralized, 237
computed torque ∼, 236
damping, 246
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high level, 4
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independent joint control, 235
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low level, 4
outer ∼ loop, 238, 243
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rate resolved ∼, 236
servo ∼, 230
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velocity resolved ∼, 236

convention
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conventions, 130
generalised, 182, 201
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representation, 2
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twist, 47
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Coriolis
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force, 162, 164
Gaspard G. de, 163
joint force, 179
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of state vector, 218

covariance, 17, 219
innovation covariance, 220
matrix, 18
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critically damped, 234
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cross entropy, 20
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tension, 200
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d’Alembert’s Principle, 185
damping, 246

constraint, 38
control, 246
critical ∼, 234
matrix, 38
servo ∼, 234

damping ratio
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data
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fitting, 33
fusion, 223
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control, 236
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of dynamics, 165
position and orientation, 95,
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degree of freedom
second order, 147

degrees of freedom, 9, 29, 96
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∆̃, 49, 113
Denavit, Jacques, 44
Denavit-Hartenberg

matrix, 98
parameters, 98
representation, 44
singularity, 45

density
pdf, 14

derivative
Lie, 32
screw, 90
time ∼ Euler angles, 69
time ∼ of pose, 81
time ∼ of quaternion, 75

Descartes, René, 9
desiderata

for entropy, 18
for probability, 21

design
parallel robot, 129
serial robot, 95, 97

determinant
homogeneous transform, 80
of Jacobian, 108
of pose transformation matrix,
89

of screw transformation ma-
trix, 88

of skew-symmetric matrix, 82
rotation matrix, 57

deviation
standard, 17

dextrous
workspace, 97

diagnostic
reasoning, 12
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differential
form, 36
ordinary ∼ equation, 231
transmission, 151

differential form, 16
differentially-driven

mobile robot, 147
dimension

physical, 165
physical ∼ of momentum, 165

directed line, 46, 131
direction

matrix of ∼ cosines, 54
direction vector, 40

of joint, 98
discretization

of configuration space, 197
displacement

analysis, 28
commutator, 32
composition, 29
finite, 37, 48
finite ∼ twist, 35, 81, 106, 150
infinitesimal, 85, 88
infinitesimal ∼ twist, 35, 48,
81, 85

inverse, 29
Lie group, 28
logarithm of finite ∼, 84

distal, 161
link, 98

distance, 18, 105
between directions, 41
error, 155
Euclidean, 9, 40
feedback, 240
on S2, 41
on SE(3), 33
on se(3), 33
orientations, 72
weighted, 9

distance-preserving, 29
distribution

conditional probability ∼, 215
force, 143
Gaussian probability ∼, 17, 24
multivariate probability ∼, 17
normal probability ∼, 17
probability ∼, 16
second-order probability ∼, 16
uniform probability ∼, 16
univariate probability ∼, 17

disturbance
force, 234, 235

divergence
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dot

product, 48
drift, 156
DRIVE, 158
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wheel, 147
driving wheel, 147
dual

basis, 114, 175
space of momentum, 175
vector space, 36
wrench, 114
wrench basis, 114

duality
serial–parallel, 128, 131
twist-wrench, 49

dynamic
constraint, 123
model in the loop, 235

dynamical
linear ∼ system, 231

dynamics, 94, 160
analytical form, 178
decoupling, 165
Euler-Lagrange, 181
forward, 160, 176
forward ∼, 180
Hamilton’s Principle, 182
inverse, 160, 176
inverse ∼, 176
Newton-Euler, 161
nonholonomic systems, 184
point mass, 161

eigenvalue, 90
eigenvector, 90
elastica, 200, 201
elbow, 96

offset, 100, 117
elbow down

configuration, 111
elbow up

configuration, 111
elevation angle, 64
elimination

dialytic, 110
Gaussian, 110

EM algorithm, 24, 215, 226
encoder, 157
end effector
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frame, 10
end-effector

frame, 98
energy

decoupling of kinetic ∼, 170
kinetic, 169–171, 180
potential, 170

entropy, 18, 19
cross ∼, 20
mutual ∼, 20

equation
Lagrange ∼, 201

equivalent
angle, 62
angle of rotation, 69, 72
axis, 62, 69, 71
kinematically ∼ robots, 151
parallel robot, 151

error
model, 104
parameters, 105
position ∼, 233
position and orientation, 96
steady state ∼, 234, 235, 239,
243

systematic, 23
estimation

MAP, 215
MLE, 215, 219, 226
parameter ∼, 11
state ∼, 24

estimator, 23, 217
least-squares ∼, 11

Euclidean
distance, 9, 40
group, 29, 34
metric, 40
space, 9

Euler
angle, 61
angle ∼ time rate, 68
angle derivative not exact, 69
angle singularity, 67
angles, 62, 64, 65

in displacement twist, 81
XYZ, 85

law of motion, 173, 174
Leonhard, 61, 161, 183
numerical condition of ∼ an-
gles, 65

spiral, 199

Theorem, 62
ZXZ angles, 63, 102
ZYX angles, 67
ZYZ angles, 64

Euler-(Rodrigues) parameters, 73
Euler-Lagrange

dynamics, 181
equations, 183, 184
vs. Newton-Euler, 185

evidential
reasoning, 12

exact, 69, 156
angular velocity not ∼, 69

excitation
of natural frequency, 191

expected value, 17
exponential

family of pdf, 215, 227
of angular velocity, 60
of twist, 84
velocity, 33

exponentiation
general angular velocity, 71
velocity, 33

extended
Jacobian, 119

Extended Kalman filter, 221
exteroceptive

sensor, 157
exteroceptive sensor, 216

factor
integrating, 53, 60, 69, 76

fading memory, 220
FD

forward dynamics, 160, 180
feedback, 232

distance ∼, 240
force ∼, 239

feedforward, 232
of dynamic model, 235

Fermat, Pierre de, 182
FFK

forward force kinematics, 114,
133, 153

field
acceleration vector ∼, 35
gravitational, 170
velocity vector ∼, 34

filter
Extended Kalman filter, 221

Kalman, 218
kinetostatic, 123, 155
recursive, 217

finite
displacement twist, 81, 106,
150

finite displacement, 37
twist, 48

first
order ODE, 231

first moment, 17
first order

motion, 28, 30
fitting, 33

calibration parameter, 105
flight simulator, 130
flip

configuration for serial arm,
111

force, 35
active ∼ control, 240
centrifugal, 163, 164
centrifugal joint ∼, 179
centripetal, 164
conservative, 182
control, 230
Coriolis, 164
Coriolis joint ∼, 179
distribution, 143
disturbance ∼, 234, 235
feedback, 239
forward ∼ kinematics, 114,
133, 153

generalised, 182
gravitational joint ∼, 179
hybrid ∼ control, 241
instantaneous line of ∼, 150
internal, 143
invariants, 84
inverse ∼ kinematics, 113
moment of ∼, 164
passive ∼ control, 240
traction, 154
vector field, 36

forgetting factor, 220
form

differential, 16, 36
forward

321 ∼ position kinematics,
102, 138

321 ∼ velocity kinematics, 141
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configuration for serial arm,
110

dynamics, 160, 176, 180
force kinematics, 114, 133, 153
kinematics for redundant
robot, 118

numerical FPK, 137
numerical FVK, 141
parallel robot

redundant sensors, 140
position

general solution, 101
position kinematics, 101, 137,
156

velocity kinematics, 105–107,
140, 155

four-vector, 79
FPK

321 algorithm, 102, 138
for parallel robot, 137
forward position kinematics,
156

numerical solution, 137
parallel robot

redundant sensors, 140
serial robot, 101

frame, 10, 14
base, 10, 98
body-fixed, 82
centroidal, 170
change, 86
end effector, 10
end-effector, 98
inertial, 162
interpolation between frames,
196

left-handed, 56
link ∼ convention, 97
notation, 8
orthogonal, 56, 80
orthogonal reference, 53
reference, 40
right-handed, 53, 56, 80

frame system, 12
free

vector coordinates, 8
free space control, 230
free vector, 42
frequency

excitation of natural ∼, 191
natural ∼ (ωn), 231

friction, 155
fudging, 221
fully parallel manipulator, 5
fully parallel robot, 127
function

harmonic ∼, 201
fusion

data fusion, 223
of sensor data, 214
sensor fusion, 221

FVK
321 algorithm, 141
forward velocity kinematics,
105, 140, 155

numerical solution, 141
serial robot, 107

gain
proportional control ∼, 233

gantry, 96
gantry robot, 97
Gauss, Johann Carl Friedrich, 73
Gaussian

probability distribution, 17, 24
Gaussian elimination, 110
gear

ratio, 94
gear ratio, 161
general

kinematic structure, 109
parallel robot

kinematic structure, 130
General Motors, 2
generalised

coordinate, 182
coordinates, 201
force, 182

generalized
inverse, 120
velocity, 83

generation
trajectory, 189

geometric constraint, 38
Gibbs, Josiah Willard, 73
Gidding & Lewis, 128
global

planning, 190
Gough, V. E., 129
GPS, 157
Gram-Schmidt procedure, 49
graph

causal ∼, 12
searching, 202

gravitational
field, 170

gravity
joint force, 179

great circle, 41
grid, 202
gripper

parallel-jaw, 55
group

continuous, 29
Lie, 29, 34

gyroscope, 157

Hamilton
Principle, 182
William Rowan, 73, 182
wrist, 119

Hamilton, William Rowan, 47
hand

robot ∼, 246
handedness

of frame, 41
hard constraint, 38
harmonic function, 201
Hartenberg, Richard S., 44
Hayati-Roberts

link transformation, 99
heading, 155
HEXA, 129, 134

inverse kinematics, 132
hidden

parameter, 215
states, 12

Hidden Markov Model, 11, 24, 215,
226

high-level control, 4
hinge angle, 153
HMM

Hidden Markov Model, 11, 24
hodometer, 156
holonomic, 53

constraint, 38
constraints, 121
mobile robot, 148

holonomy, 60
homogeneity constraint, 43, 47
homogeneous

coordinate vector, 7
coordinates, 40, 42
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derivative of ∼ transform, 81
inverse ∼ transform, 80
transform, 149
uniqueness ∼ transform, 80

homogeneous transform, 79
homotopy

method, 110
Honda Corporation, 2
Hooke joint, 5, 9
hookup length, 153
humanoid

robot, 6
Huyghens principle, 203
hybrid

force control, 241

IAK
Inverse Acceleration Kinemat-
ics, 237, 243

ICR
instantaneous centre of rota-
tion, 150

ID
inverse dynamics, 176

ideal
structure, 161

identification, 37
based on forces, 208
based on velocities, 208
of contact geometry, 208
of dynamics, 237
of tangent spaces, 31

identity
displacement, 29
element of SE(3), 30

IFK
inverse force kinematics, 113

iid, 23
ILF

instantaneous line of force, 150
impedance

control, 245
of contact, 123
of passive force control, 240
transformation, 89

impulse, 120
incomplete information, 13
independence

conditional, 13
independent joint control, 235
inertia, 246

Cartesian ∼ tensor, 168
constraint, 38
generalised ∼ matrix, 171
matrix, 38, 168
physical units, 168
positive-definite, 170
reference frames, 169
rotational, 168
spatial ∼ matrix, 171
tensor, 168–170
time invariance, 162
transformation of ∼ tensor,
172

inertial
frame, 162

inference
plausible ∼, 12

infinitesimal
displacement, 85, 88
displacement twist, 48, 81, 85
rotation, 61
rotation matrix, 61
screw transformation, 88
separation, 28
transformation, 88
transformation matrix, 85

influence diagram, 12
information, 14

incomplete, 13
inner

control loop, 238, 243
innovation, 218, 220

covariance, 220
instantaneous

centre of rotation, 150
line of force, 150

instantaneous screw axis, 91
integrability, 121

of angular velocity, 68
integrable, 69, 156
integral

action ∼, 182
action ∼, 183
control, 234

integrating
factor, 53, 60, 69, 76

integrating factors, 106
intelligence, 2
internal

motion of redundant robot,
118

internal force, 143

interpolation

between frames, 196

between lines, 196

decoupled, 195

decoupled orientation, 196

motion, 189

point-to-point, 192

screw motion, 195

time-optimal, 197

invariant, 16, 18, 84, 86, 185, 206

of force, 84

of motion, 84

property, 47

inverse

acceleration kinematics, 237,
243

displacement, 29

dynamics, 160, 176

element, 32

force kinematics, 113

generalized, 120

homogeneous transform, 80

kinematics for redundant
robot, 118

parallel robot

position kinematics, 132

position kinematics, 108, 110,
157

pseudo ∼, 120

pseudo-inverse, 244

rotation matrix, 57

velocity kinematics, 112, 136,
154

IPK

closed-form, 110

inverse position kinematics,
108, 110, 157

parallel robot

inverse position, 132

ISA, 150

first order, 91

instantaneous screw axis, 37,
91

second order, 91

isometry, 57, 80

isotropic

mass distribution, 174

IVK

closed-form, 112
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inverse velocity kinematics,
112, 136, 154

Jacobi, Karl, 201
Jacobi, Karl Gustav Jacob, 106
Jacobian

analytical ∼, 106
extended, 119
matrix for serial robot, 105
midframe ∼, 107, 108
physical interpretation, 106
serial robot, 106
transpose, 136, 137, 141, 184
twist ∼, 106

jerk, 155, 189
continuous ∼ profile, 193

joint, 9
acceleration, 176
actuated, 5
centrifugal ∼ force, 179
Coriolis ∼ force, 179
gravitational ∼ force, 179
Hooke, 5, 9
passive, 5
prismatic, 9, 42, 131
revolute, 9, 42
rotational, 9
sliding, 9
space, 147, 189
space mass matrix, 179
spherical, 9, 132
universal, 5, 6, 9

Kalman
Extended Kalman filter, 221
filter, 24, 218

Kalman Filter, 215
Killing

W. K. J., 33
kinematic

321 ∼ structure, 100
constraint, 123
general ∼ structure, 105, 109
ideal ∼ structure, 161
joint, 9
zero position, 100

kinematics, 94
312 forward position ∼, 138
312 forward velocity ∼, 141
321 ∼, 100, 131
321 ∼ structure with offsets,
100

321 forward position ∼, 102
closed-form, 95
continuation method, 110
dialytic elimination, 110
equivalent robots, 151
first order, 30
forward ∼ for redundant
robot, 118

forward force ∼, 114, 133, 153
forward position ∼, 101, 137,
156

forward velocity ∼, 105, 140,
155

homotopy method, 110
instantaneous, 30
inverse ∼ for redundant robot,
118

inverse acceleration ∼, 237,
243

inverse force ∼, 113
inverse position ∼, 108, 110,
157

inverse velocity ∼, 112, 136,
154

numerical FPK, 137
numerical FVK, 141
parallel robot

generic model, 130
inverse position, 132

second order, 30, 91
kinetic

decoupling of ∼ energy, 170
energy, 169–171, 180

kinetostatic
filter, 123, 155

kinetostatics, 94
knowledge, 27

representation, 12
Kullback-Leibler divergence, 20

Lagrange
equation, 201
Joseph Louis, 183
multiplier, 120, 185

Lagrangian, 182
landmark, 157, 226
laser

range finder, 157
scanner, 157

latitude angle, 64
learning

model-based ∼, 22
least squares, 33, 105
least-squares

estimator, 11
left

translation, 82
left translation, 31
leg length

of parallel robot, 131
LiAS, 222
Lie

algebra, 33, 34
bracket, 32, 48, 158
derivative, 32
group, 29, 34, 80
group SO(3), 57
Sophus, 29

likelihood, 22, 215, 219, 226
line, 41

coordinates, 42
Denavit-Hartenberg represen-
tation, 44

directed, 46, 131
Hayati-Roberts representa-
tion, 46

instantaneous ∼ of force, 150
interpolation between ∼, 196
minimal representation, 44, 46
transformation, 87
vector, 161
vector coordinates, 7, 42

linear
conservation of ∼ momentum,
162

dynamical system, 231
momentum, 161, 166, 174

linearly
dependent platforms, 138

link
distal, 98
frame convention, 97
proximal, 98

load
∼/weight ratio, 96

local
planning, 190

local minima
in path planning, 197

logarithm
general rotation, 71
of finite displacement, 84
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of finite rotation, 60, 61
orientation, 72
pose, 33

longitude angle, 64
loop

inner control ∼, 238, 243
outer control ∼, 238, 243

low-level control, 4

manifold
SE(3), 30
singularity ∼, 142

manipulability, 119
manipulator

6R, 109
anthropomorphic, 96
design, 95, 129
elbow, 96
equivalent parallel ∼, 151
fully parallel, 5
gantry, 96
micro, 5
octahedral ∼, 130
parallel, 5, 127
redundant, 117
SCARA, 96
serial, 4, 94
shoulder, 96
Stewart platform, 5
Stewart-Gough platform, 5
wrist, 96
wrist-partitioned, 95, 100

manual
teaching, 109

MAP, 215
Maximum a Posteriori, 23

map
building, 214

Markov
Hidden ∼ Model, 11, 24, 215,
226

process, 24, 217, 225, 227
system, 24

Markov process, 12
mass, 161

Cartesian ∼ matrix, 171
centre of ∼, 166
joint space ∼ matrix, 179
matrix, 171, 175

transformation, 172
point, 161, 171

point ∼ acceleration, 161

pose ∼ matrix, 173

positive-definite ∼ matrix, 180

screw ∼ matrix, 173, 177

matching, 224

mathematical

model, 12

matrix, 7

angular velocity, 81

Cartesian mass ∼, 171

covariance ∼, 18

damping, 38

Denavit-Hartenberg, 98

derivative of homogeneous
transform ∼, 81

direction cosines, 54

generalised inertia, 171

homogeneous transform, 79

inertia, 38, 168

infinitesimal rotation ∼, 61

inverse homogeneous trans-
form, 80

inverse orientation, 57

Jacobian ∼, 105

Jacobian ∼ of serial robot, 106

joint space mass ∼, 179

mass, 171

non-minimal representation,
78

orientation, 54

orthogonal, 116

pose, 79

rotation, 54

rotation about frame axis, 55

rotational inertia ∼, 168

screw transformation, 88

skew-symmetric, 60, 81

spatial inertia, 171

stiffness, 38, 143

uniqueness homogeneous
transform ∼, 80

Maupertuis

Pierre Louis Moreau de, 182

Maximum A Posteriori, 215

Maximum Likelihood Estimation,
215, 219, 226

McCallion, H., 129

mean, 17

Mean Time Between Failure, 4

mean value

of a probability distribution,
16

measure, 16
probability ∼ as one-form, 36

measurement
noise, 218
prediction of measurement,
218, 220

memory
fading memory, 220

metric, 18, 33, 37
Euclidean, 40

micro manipulator, 5
midframe Jacobian, 107, 108
milling, 128
minimal

line representation, 44, 46
representation, 57, 80
representation of rotation, 61,
67

minimal representation, 42, 43
minimum

local ∼ in path planning, 197
mixture

pdf, 215
MLE, 215, 219, 226
mobile

differentially-driven ∼ robot,
147

omni-directional ∼ robot, 6
robot, 147
robot sensor, 156
robot with trailer, 153

mobile robots, 5
mobility, 38
mode

of probability distribution, 23
model

building, 11
complexity, 24
coordinate, 2
correction for calibration, 105
error, 104
mathematical, 12
nominal robot ∼, 104
physical, 2
recursive ∼, 12

model-based
learning, 22
planning, 190

model-free
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planning, 190
model-free research, 3
modelling, 2
moment

first ∼, 17
of force, 35, 164
of momentum, 164
second ∼, 18

momentum
angular, 164, 167, 168, 174
angular ∼ dynamics, 167
conservation of angular ∼, 165
conservation of linear ∼, 162
decoupling about c.o.m., 168
linear, 161, 166, 174
moment of ∼, 164
of rigid body, 38
total ∼ of rigid body, 174
total angular ∼, 168

monotonically increasing, 18
motion, 28, 188

blending, 193
compliant, 205
continuous jerk profile, 193
control, 230
cyclic, 121
degrees of freedom, 9
first order, 28, 30
force-controlled ∼ specifica-
tion, 204

internal ∼ of redundant robot,
118

interpolation, 189
invariants, 84
nonholonomic ∼ planning, 203
operator, 157
planning, 188
point-to-point, 192
rigid body, 29
screw, 37
second order, 28, 30, 147
smooth ∼, 191
time-optimal, 197

motion control
PID, 233

motor
product, 48, 90, 175

mounting plate, 10, 97
moving

composition of rotations about
∼ axes, 62

Mozzi, Giulio, 35, 37
µ, 17
multiplier

Lagrange, 120, 185
multivariate

probability distribution, 17
mutual entropy, 20

N (µ, σ), 17
natural

coordinates, 94
frequency (ωn), 231
identification of tangent
spaces, 31

pairing, 36
network, 12

Bayes ∼, 215
neutral element, 32

displacement, 29
Newton

laws, 161, 165
Sir Isaac, 161

Newton-Euler
dynamics, 161
for serial robots, 175
single rigid body, 174, 177
vs. Euler-Lagrange, 185

Newton-Raphson, 138
for IPK, 109

no flip
configuration for serial arm,
111

noa notation, 54
noise, 218

measurement, 218
process, 218
white, 221

nominal model, 104
non-minimal

representation, 57
non-minimal representation, 78
non-slipping

constraint, 155
nonholonomic

constraint, 147
dynamics for ∼ systems, 184
robot, 149

nonholonomic system, 6
norm

quaternion, 73
two-norm of matrix, 18

normal
acceleration, 91
common, 44

axode, 91
probability distribution, 17

null
space, 185

numerical
condition

RPY angles, 66
condition of Euler angles, 65
conditioning, 71
procedure

Gram-Schmidt, 49
singularity detection, 116

objective, 18
observer, 217
obstacle avoidance, 119
Occam’s razor, 24
Ockham, William of, 24
octahedral platform, 130
ODE

first order, 231
ordinary differential equation,
231

second order, 231
third order, 234

odometry, 156
off line programming, 104
offset

elbow, 100, 117
shoulder, 100, 117

offsets
in 321 kinematic structure,
100

ωn

natural frequency, 231
omni-directional

mobile robot, 6
omnidirectional vehicle, 148
on-line

programming, 104
one-form, 36
open loop, 239
operator

motion ∼, 157
operators

Bayesian ∼, 22
optimality

time ∼, 190
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optimization
constrained, 120

order of six-vector, 83
ordinary

differential equation, 231
orientation

absolute, 157
and position, 80
and position decoupling, 95
Cartesian, 63
inverse of ∼ matrix, 57
matrix, 54
of mobile robot, 149
of vector, 41
rigid body, 53
singularity, 116

orientation-preserving, 29
origin

of motion, 29, 31
orthogonal

complement, 49
group, 34
linear transformation, 57
matrix, 34, 116
proper ∼ matrix, 57
reference frame, 56, 80

orthogonality
constraint, 43

orthogonality constraint, 57
oscillation

excitation of natural ∼, 191
outer

control loop, 238, 243
outward recursion, 106

pairing, 36, 114, 175
natural, 36

parallel
advantages of ∼ robot, 127
equivalent ∼ robot, 151
FPK for ∼ robot, 137
fully ∼ robot, 127
manipulator, 151
octahedral ∼ robot, 130
robot design, 129
transport, 31, 32

parallel robot, 5, 127
forward velocity kinematics,
140

generic model, 130
inverse position kinematics,
132

numerical FPK, 137
numerical FVK, 141

parallel-jaw gripper, 55
parallellogram

spatial ∼, 129
parameter

constraint, 45
Denavit-Hartenberg, 98
error, 105
estimation, 11
fitting for calibration, 105
hidden, 215
visible, 215

partial
wrench, 114, 115, 134, 137, 154

passive
force control, 240
joints, 128
pose interpretation, 79
rotation interpretation, 56, 62
screw transform, 88

passive joint, 5
patch

coordinate ∼, 45
path, 188

smooth, 197
path planning, 74
pattern

recognition, 11
Paul, Richard, 55
pdf, 14, 16
Pfaff

Johann Friedrich, 185
Pfaffian

matrix of onstraints, 185
Pham, T. D., 129
physical

constraint, 121
dimension, 165
model, 2
units of momentum, 165

piano movers problem, 191
pick-and-place, 4
PID

motion control, 233
Pieper, Donald L., 95
pitch, 84

of a screw, 46
plane, 41
planetary rover, 6
planning, 188

analytical, 188
discrete, 188
global, 190
local, 190
model-based ∼, 190
model-free ∼, 190
nonholonomic motion ∼, 203
reactive ∼, 190
sensor-based ∼, 190
sensor-less ∼, 190

platform
octahedral ∼, 130

plausible inference, 12
Plücker

coordinates, 42, 43
Julius, 42

Plücker, Julius, 35
Poinsot

Louis, 37
Theorem, 38

point
central ∼ of ISA, 91
coordinates, 7
mass, 161, 171
mass acceleration, 161
via-point, 188
wrist centre, 102

point-to-point motion, 192
polar vector, 41
pole of acceleration, 91
pole placement, 218
polynomial

motion profile, 192
trajectories, 189

pose, 10, 28, 79, 80
active/passive interpretation,
79

composite, 80
compound, 80
isometry, 80
mass matrix, 173
matrix, 79
of rigid body, 27
time rate, 81
twist, 48, 82, 83, 171, 172
twist transformation, 89

position
312 forward ∼ kinematics, 138
321 forward ∼ kinematics, 102
absolute, 157
and orientation, 79, 80
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and orientation decoupling, 95
controlled robot, 59
error, 233
forward ∼ kinematics, 101,
137, 156

inverse ∼ kinematics, 157
kinematic zero, 100
of mobile robot, 149
parallel robot

inverse ∼ kinematics, 132
singular, 115
vector, 40

positive-definite
inertia, 170
mass matrix, 180

posterior
probability, 22

potential
energy, 170
function, 182

potential energy
redundancy optimization, 143

potential field
for path planning, 197

power, 36
powered caster, 6
prediction

of measurement, 218, 220
of state vector, 217

Principia Mathematica, 161
Principle

d’Alembert, 185
Fermat’s ∼ of Least Time, 182
Maupertuis’ ∼ of Least Ac-
tion, 182

principle
Huyghens ∼, 203

prior
probability, 22

prismatic joint, 9, 42, 131
probability

Bayesian, 4
conditional ∼ distribution, 215
density, 16
density function, 16
desiderata for ∼, 21
distribution, 16
exponential pdf, 215, 227
Gaussian ∼ distribution, 17,
24

mixture pdf, 215

mode of ∼ distribution, 23
multivariate ∼ distribution, 17
normal ∼ distribution, 17
posterior, 22
prior, 22
second-order ∼ distribution,
16

uniform ∼ distribution, 16
univariate ∼ distribution, 17

probability density function, 14
process

Markov ∼, 24, 217, 225, 227
noise, 218
stochastic ∼, 218

product
cross, 48
dot, 48
motor, 48, 90, 175
scalar, 48
spatial cross ∼, 48
spatial scalar ∼, 48, 175
vector, 48, 60

product rule, 22
program

task ∼, 240
programming

off-line, 104
on-line, 104

projection
of twist, 122

proper
isometry, 57
orthogonal matrix, 57

property
invariant, 47

proposition, 12
proprioceptive

sensor, 157
proprioceptive sensor, 215
proximal, 161

link, 98
pseudo-inverse, 120, 244

weighted, 121, 122, 143
PUMA robot, 95
pure

rolling constraint, 155
PUS

serial leg structure, 134

quartic
equation, 133

quaternion, 72
generators, 73
norm, 73
scalar part, 73
time rate, 75
vector part, 73

R, rotation matrix, 54
R.U.R., 1
radius

steer, 152
rate

resolved ∼, 112
resolved control, 236

ratio
gear, 94
load/weight, 96

RCC
remote centre compliance, 240

reachable
workspace, 97

reactive
planning, 190

reasoning
causal, 12
diagnostic, 12
evidential, 12

reciprocal, 206
set, 49

reciprocity, 49, 114, 123, 206, 241
recognition

pattern ∼, 11
recursion

outward ∼ for FVK, 106
velocity ∼, 106

recursive
filter, 217
model, 12

redundancy, 117
for obstacle avoidance, 119
for singularity avoidance, 119
parallel robot, 143
resolution, 178

potential energy, 143
resolution criterion, 119, 143

redundant
forward kinematics for ∼

robot, 118
inverse kinematics for ∼ robot,
118

sensors
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parallel robot, 140
reference

frame, 40
body-fixed, 82
left-handed, 56
orthogonal, 53, 56, 80
right-handed, 53, 56, 80

regional
workspace, 116

regional singularity, 116
relevance diagram, 12
reliability, 4

6σ, 4
remote

centre compliance (RCC), 240
repeatability, 104
representation

coordinate, 2
Denavit-Hartenberg, 44
minimal, 42, 43, 57, 80
minimal ∼ of rotation, 61, 67
minimal line ∼, 44
non-minimal, 78
singularity for minimal ∼, 45
transformation, 86

research
bottom-up, 2
model-free, 3
top-down, 2

resolution
redundancy ∼ criterion, 119

resolved rate, 112
resolver, 157
revolute joint, 9, 42
right

translation, 82
rigid

constrained ∼ body, 38
momentum of ∼ body, 38
pose of ∼ body, 27

rigid body, 10
acceleration, 90
acceleration centre, 91
acceleration pole, 91
rotation, 34
twist, 82

rigidity
serial robot, 127

robot
T 3, 95
321, 100

advantages of parallel ∼, 127
advantages of serial ∼, 127
analytical dynamics for serial
∼, 178

anthropomorphic, 96, 118
bicycle, 151
car-like, 147
caster, 147
casterless, 151
design, 95, 129
differentially-driven mobile ∼,
147

dynamics, 160
elbow, 96
equivalent parallel ∼, 151
forward kinematics for redun-
dant ∼, 118

fully parallel ∼, 127
FVK for serial ∼, 107
gantry, 96
hand, 246
holonomic, 148
humanoid, 6
inverse kinematics for redun-
dant ∼, 118

Jacobian matrix of serial ∼,
106

kinematically equivalent, 151
mobile, 5, 147

with trailer, 153
mobile ∼ sensor, 156
Newton-Euler for serial ∼, 175
nonholonomic, 6
octahedral ∼, 130
omni-directional mobile ∼, 6
omnidirectional mobile robot,
148

parallel, 5, 127
redundant, 117
SCARA, 96
serial, 4, 94
shoulder, 96
walking, 2
wrist, 96
wrist-partitioned, 95, 100

robust, 14
robustness, 190
Rodrigues

Olinde, 58, 73
parameters, 73

Roll-Pitch-Yaw angles, 65–67

numerical condition, 66
rolling

pure ∼ constraint, 155
ROTATE, 158
rotation

about frame axis, 55
active/passive, 56, 62, 65
composition about moving
axes, 62

composition of ∼, 57
determinant of ∼ matrix, 57
equivalent angle, 62
fixed axes, 65
holonomic coordinates, 53
infinitesimal, 61
infinitesimal ∼ matrix, 61
instantaneous centre of ∼, 150
inverse of ∼ matrix, 57
logarithm of finite ∼, 60, 61
matrix, 54

uniqueness, 56
matrix about frame axis, 55
minimal representation of ∼,
61, 67

proper isometry, 57
rigid body, 34
Taylor series, 60
time rate ∼ matrix, 58
trace of ∼ matrix, 70

rotational joint, 9
rover

planetary ∼, 6
rule

Bayes’ ∼, 22
product ∼, 22
sum ∼, 22

RUS
serial leg structure, 134

R(X, α), 55, 85, 99

S2, 41
SA

see ISA, 37, 91
scalar

product, 48
spatial ∼ product, 48, 175

scalar part of quaternion, 73
SCARA, 4, 96
screw, 46

active/passive ∼ transform, 88
axis, 37, 84
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first order, 91

instantaneous, 91

coordinates, 47

determinant of ∼ transforma-
tion matrix, 88

infinitesimal ∼ transforma-
tion, 88

instantaneous ∼ axis, 150

instantaneous axis (ISA), 37

mass matrix, 173, 177

motion, 37

path for interpolation, 195

second order ∼ axis, 91

theory, 48

time derivative, 90

transformation, 87

transformation matrix, 88

twist, 48, 82–84, 172

S∆, infinitesimal screw transforma-
tion, 88

SE(2), 34, 147

se(2), 34

SE(3), 29, 80

distance, 33

identity element, 30

manifold, 30

se(3), 31, 82, 175

distance, 33

se∗(3), 175

second

order ODE, 231

second moment, 18

second order

motion, 28, 30

motion degree of freedom, 147

second-order

probability distribution, 16

selective compliance, 96

semantic network, 12

sensor

exteroceptive, 157, 216

fusion, 214, 221

mobile robot, 156

proprioceptive, 157, 215

sensor-based

planning, 190

sensor-less

planning, 190

serial

advantages of ∼ robot, 127

analytical dynamics for ∼

robots, 178
arm, 94
chain, 94
FVK for ∼ robot, 107
Jacobian matrix of ∼ robot,
106

manipulator, 94
Newton-Euler for ∼ robots,
175

rigidity of ∼ robot, 127
robot, 94
robot design, 95

serial robot, 4
design, 97
inverse velocity kinematics,
112

servo
damping, 234
stiffness, 234

servo control, 230
Shannon, Claude Elwood, 18
shoulder, 96

offset, 100, 117
σ, 17
similar hexagons

parallel robot, 138
similarity transformation, 90
singular

configuration, 115
position, 115
value, 116

Singular Value Decomposition, 116
singularity, 115

architectural, 116
arm-extended, 116
avoidance, 119
boundary, 116
closed-form ∼ detection, 116
coordinate, 45, 46, 53, 68
coordinate ∼, 80
coordinate ∼, 64, 67
Denavit-Hartenberg, 45
Euler angle ∼, 67, 68
for 321, 116
for minimal representation, 45
inverse velocity ∼, 68
manifold, 142
numerical ∼ detection, 116
orientation, 116
parallel robot, 142

quaternion, 74
regional, 116
serial robot, 115
wrist-above-shoulder, 116
wrist-extended, 116

six-vector, 8, 42
order, 83

6R
manipulator, 109

wrist-partitioned, 95
wrist-partitioned manipulator,
100

6σ reliability, 4
skew-symmetric matrix, 60, 81
SLIDE, 158
sliding joint, 9
slip, 155, 156
slippage, 160
smooth, 30

motion, 191
path, 197

snake, 203
SO(3), 33, 57
so(3), 33
space

Cartesian, 9, 95
configuration, 201
configuration ∼, 188
configuration ∼, 147
curved, 27, 30
Euclidean, 9
joint, 189
joint ∼, 147
null, 185
tangent, 97
twist, 35
twist ∼, 206
twist ∼ of constraint, 123
vector, 31
vector ∼, 31
wrench ∼, 206
wrench ∼ of constraint, 123

spatial
cross product, 48
inertia matrix, 171
parallellogram, 129
scalar product, 175
transpose, 88

spatially orthogonal, 88
special

Euclidean group, 29, 34
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specification
of force-controlled motion, 204
task specification, 245

speed, 47
steering, 147

sphere
unit, 41

spherical joint, 9, 132
spin angle, 65
spiral

Cornu, 199
cubic ∼, 200
Euler, 199

spring
virtual, 119

standard
deviation, 17

state, 12, 215
correction, 218
estimation, 24
hidden ∼, 12
prediction of state, 217
vector, 217

statement, 12
statics, 35, 94
steady state error, 234, 235, 239,

243
STEER, 158
steer radius, 152
steering

speed, 147
wheel, 147

Stewart
D., 129
platform, 130

Stewart platform, 5
Stewart-Gough platform, 5, 130
stiffness, 246

constraint, 38
control, 246
matrix, 38, 143
servo ∼, 234

stochastic
process, 218

structural, 60
structure, 12, 13, 16, 27, 57, 72, 84
subjective, 18
sum rule, 22
SVD, 116
sweep

for FVK, 106

system
linear dynamical ∼, 231
Markov ∼, 24
unforced, 184

systematic error, 23

T 3 robot, 95
tachometer, 233
tangent

bundle, 31
space, 97
space at identity, 31, 83
vector, 30, 32

tangent space, 114
tangential acceleration, 91
task, 188

frame, 241
frame (TF), 206
frame tracking, 207
specification, 245

τ

time constant, 232
Taylor

series for rotation, 60
td, 81, 106, 150
T∆, infinitesimal transformation

matrix, 85
t∆, infinitesimal displacement

twist, 85
teaching

manual, 109
tension

of a curve, 200
tensor

inertia, 168, 169
transformation of inertia ∼,
172

theorem
Chasles, 37, 46
Poinsot, 38

third
order ODE, 234

three-vector, 8
transformation, 86

3D, 9
time

constant (τ), 232
invariance of inertia, 162
optimality, 190
principle of least ∼, 182

time derivative

Euler angle ∼, 68
pose, 81
quaternion, 75
rotation matrix, 58
screw, 90

time-optimal
mobile robot path, 199

top-down research, 2
T r, 99
T r, translation matrix, 85
trace

of rotation matrix, 70
tracking, 215

Cartesian error, 194
error, 195
task frame ∼, 207

traction force, 154
trade-off

in planning, 189
trailer, 153
trajectory generation, 74, 189
transform

derivative of homogeneous ∼,
81

homogeneous, 79, 149
pose twist, 89
screw, 88
uniqueness homogeneous ∼,
80

transformation
determinant of screw ∼ ma-
trix, 88

Hayati-Roberts, 99
impedance, 89
infinitesimal, 85
infinitesimal ∼, 88
infinitesimal screw ∼, 88
linear orthogonal, 57
of line, 87
of pose twist, 89
of three-vector, 86
representation, 86
screw, 87, 88
similarity, 90

transitivity
of motion, 28

translation
left, 82
left ∼, 31
right, 82

transmission
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differential ∼, 151
transport

parallel, 31, 32
transpose

Jacobian ∼, 136, 137, 141
spatial, 88

transversal, 120
trapezoidal velocity profile, 192
triangulation, 157
twist, 35, 46, 195

acceleration, 90
axis, 37
body-fixed, 82
coordinates, 47
exponential of ∼, 84
finite displacement, 48
finite displacement ∼, 81, 106,
150

ifinite displacement, 35
infinitesimal displacement, 35,
48, 85, 88

infinitesimal displacement ∼,
81

Jacobian, 106
order of three-vectors, 83
pose, 48, 82, 171, 172
pose ∼, 83
projection, 122
screw, 48, 82, 172
screw ∼, 83
screw ∼, 84
space, 35, 114, 206
space of constraint, 123
transformation of pose, 89
velocity, 35, 81, 82

two norm
of matrix, 18

2D, 9

ultrasonic sensor, 157
uncertainty, 13
unforced

system, 184
uniform

probability distribution, 16
unit quaternions, 72
unit sphere, 41
univariate

probability distribution, 17
universal joint, 5, 6, 9
UPS

serial leg structure, 134

value
expected ∼, 17
singular, 116

variation
of action integral, 183

variational problem, 182
Variax, 128
vector, 7, 48

∼ field of force, 36
acceleration ∼ field, 35
axial, 41
coordinates, 7
direction, 40
direction ∼ of joint, 98
dual ∼ space, 36
free, 42
free ∼ coordinates, 8
homogeneous, 79
homogeneous coordinate, 7
line, 161
line ∼ coordinates, 7
of quaternion, 73
polar, 41
position, 40
product, 48, 60
sense, 41
six-vector, 8, 42
space, 31
state vector, 217
tangent, 30, 32
three-vector, 8
velocity ∼ field, 34

velocity
312 forward ∼ kinematics, 141
analysis, 28
angular, 58, 68, 75, 81
angular ∼ not exact, 69
exponential of angular ∼, 60
forward ∼ kinematics, 155
generalized ∼, 83
integrability of angular ∼, 68
inverse ∼ kinematics, 136
polynomial ∼ profile, 192
resolved control, 236
rigid body, 81

definition, 28
trapezoidal ∼ profile, 192
twist, 35
vector field, 34

velocity-controlled robot, 59
verse of angle, 70
via-point, 188, 193
virtual

constraint, 121
spring, 119

visible
parameter, 215

walking robot, 2
wavefront algorithm, 203, 204
weight

load/∼ ratio, 96
weighted distance, 9
weighted pseudo-inverse, 121, 122,

143
wheel

driven, 147
driving, 147
steering, 147

wheel diameter, 155
wheelbase, 152, 155
wheeled mobile robot, 147
white noise, 221
window

acceleration window, 194
work, 36
workspace

constraint, 123
dextrous, 97
reachable, 97
regional, 116

wrench, 35, 36, 46
as one-form, 36
basis, 134
coordinates, 48
dual ∼ basis, 114
dual ∼, 114
partial ∼, 114
partial ∼, 115, 134, 137, 154
space, 114, 206
space of constraint, 123

wrist, 96
centre point, 102
Hamilton, 119
ZXZ, 63, 95, 108

wrist-above-shoulder singularity,
116

wrist-extended singularity, 116
wrist-partitioned

robot arm, 100
wrist-partitioned manipulator, 95
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XYZ
Euler angles, 85

zero
kinematic ∼ position, 100

ζ

damping ratio, 231
ZXZ

Euler angles, 63, 102
wrist, 62, 63, 95, 108

ZYX

Euler angles, 67

ZYZ

Euler angles, 64
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