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Computation Based on Fixed Reservoirs

Liquid State Machine,
[Natschl äger et al.,
Neural Computation 2002]

Echo State Networks,
[Jaeger, NIPS 2002]

BPDC Networks,
[Steil, IJCNN 2004]
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A New Approach to Recurrent Networks

fully recurrent networks

discrete time:

~x(k +1) = W tanh(~x(k)) + ~u(k)

continuous time via Euler step

Task: Learning of Time Series, Trajectories
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BackPropagation- DeCorrelation Learning Rule

∆w1j(k + 1) = η
tanh(xj(k))∑

s tanh(xs(k))2 + ε
γ1(k + 1)

Error Backpropagation (Error e1 = ynet − ytarget )

γ1(k +1) = w11 tanh′(x1(k))e1(k)−e1(k +1)

Decorrelation Factor

tanh(xj(k))∑
s tanh(xs(k))2 + ε

= C−1
k

~tanh(~x(k))

Ck = [tanh(~x(k))][tanh(~x(k))]T + εI
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Minimize Quadratic Error for Reference Signal d(k)

E =
∑

k

(x1(k)− d1(k))2

subject to

~g(k+1) = −~x(k +1) + (1−∆t)~x(k) + ∆tW tanh(~x(k)) = 0

Virtual Target for States

∆xtar = −
(

∂E
∂x

)T

= −
(

eT (1), . . . , eT (K )
)T

,

with error ei(k) =

{
xi(k)− di(k), i = 1

0, i 6= 1
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Virtual Teacher Forcing

use constraint equation

∂g
∂w

∆w +
∂g
∂x

∆x = 0 ⇒ ∂g
∂w

∆w = −∂g
∂x

∆x.

and solve

∆wbatch = −η

(
∂g
∂w

)# ∂g
∂x

∆xtar,

∆wbatch = −η

[(
∂g
∂w

)T (
∂g
∂w

)]−1 (
∂g
∂w

)T ∂g
∂x

∆xtar
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BPDC-Interpretation

∆wbatch = −η

[(
∂g
∂w

)T (
∂g
∂w

)]−1 (
∂g
∂w

)T ∂g
∂x

∆xtar

= −η [correlation matrix]−1 (state vector) (error term)

= −ηdecorrelation–backpropagation
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Scaled Error Correction

∆w1j(k +1) =
η∑

s tanh(xs(k))2 + ε
tanh(xj(k))γ1(k +1)

= scaling× input× error

where γ1(k +1) is a modified error:

γ1(k +1) = w11 tanh′(x1(k))e1(k)−e1(k +1)

Why such strange error ?
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Step by Step
1 x(1), e(0) = 0

2 e(1)

3 ∆x(1) ∼ − ∂E
∂x(1) = −e(1)

4 ∆w(1) : [x(0), w(1)]→ x(1) + η∆x(1)

5 k = 2 (without applying w(1) step !)
6 x(2)← (w(1), x(1))

7 γ(2) = −e(1) + effect of not applied ∆x from k = 1
8 ...
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Non-homogeneous Reservoir

randomized thresholds provide richer dynamics

randomized thresholds preserve stability

Motivates Intrinsic Plasticity

mechanism motivated by neurobiological studies

information maximization principle

longer time-scale

autonomous self-regulation

minimize Kullback-Leiber distance to exponential
distribution
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Minimize Kullback-Leibler Distance to Exponential

use gradient rule for fermi function

y = fermi(x , a, b) =
1

1 + exp(−a∗x−b)

∆b = η

(
1.0− (2 +

1.0
µ

)y +
1.0
µ

y2
)

;

∆a = η

(
1.0
a

+ x − (2 +
1.0
µ

)xy +
1.0
µ

xy2
)

;

∆a = η

(
1.0
a

)
+ ∆b > 0

introduced by [Triesch, ICANN 2005]
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Interactions

feedback
dynamic reservoir

fixed 

output

bias

inputs

trainable
weights 

 

Learning

Recurrency

Stability BPDC Networks 

fixed reservoir,
system theory 

regularisation

dynamic memory

optimisation

Recurrent Learning Beyond Gradient Descent

use virtual teacher→ short term error propgation

use intrinsic plasticity→ longer term adaptation

interaction of mechanisms on two scales

stability preservation
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Three kinds of questions

What is the nature of the encoding ?

How do the learning mechanisms interact ?

What is represented ?

Applications

time series prediction

generative modeling of data from observing humans

support movement perception by prediction

data from (physics based) robot simulation
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dynamic shift between linear/nonlinear modeling

multi-signal learning on one reservoir is possible

multi-dimensional learning on one reservoir is
possible

IP tends to change neurons to threshold units

measure correlation/decorrelation is difficult

⇒ how generic is the feature machine ?
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Work done at HRI

Jochen J.
Steil

setup of environment NEO/NST, mysql, gcc

implement and test of multidimensional case

interpretation as error correction

monitor discrete coding of IP

clustering sequences for labeling with SOM-SD
(ongoing project)


