

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Learning Recurrent Dynamics Recurrent Learning Dynamics

Jochen J. Steil

Neuroinformatics Group Faculty of Technology Bielefeld University Honda Research Institute Europe Offenbach

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

04.04.2006 HRI Offenbach

Jochen J. Steil	Vita
Learning Recurrent Dynamics	
Motivation	
BPDC Networks	Honda Research
Perspectives Applications	Diploma in Mathematics & The Neuroinformatics Group Bielefeld University Faculty of Technology
	Abitur 1985 1999 2006 1992 1995/96 2005/2006
	St. Petersburg 1886 2006 Padua University
	Ochtrup Electrotechnical University
	< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 < つ Q (や

Jochen	J.
Steil	

Motivation

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Recurrent Networks

• are universal nonlinear systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Recurrent Networks

- are universal nonlinear systems
- provide generative models
- nonlinear but tractable

Goals

model dynamic processes and signals

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Recurrent Networks

- are universal nonlinear systems
- provide generative models
- nonlinear but tractable

Goals

- model dynamic processes and signals
- study interaction of learning mechanisms
 - on different time scales
 - on different levels
 - in stability and learning

Learning Recurrent Dynamics

Motivation

BPDC Networks

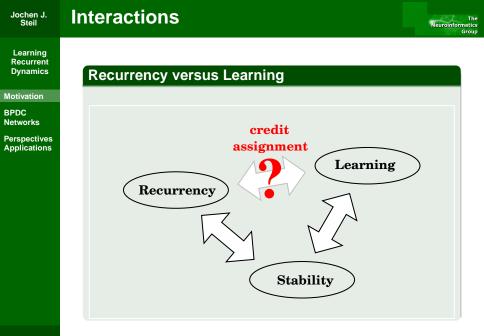
Perspectives Applications

Recurrent Networks

- are universal nonlinear systems
- provide generative models
- nonlinear but tractable

Goals

- model dynamic processes and signals
- study interaction of learning mechanisms
 - on different time scales
 - on different levels
 - in stability and learning
- application in cognitive modeling and robots



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Interactions

The Neuroinformatics Group

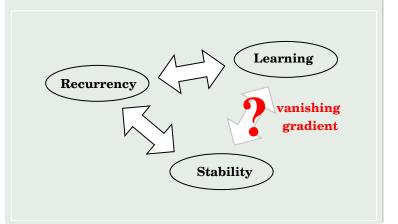
Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Learning versus Stability



Interactions

The Neuroinformatics Group

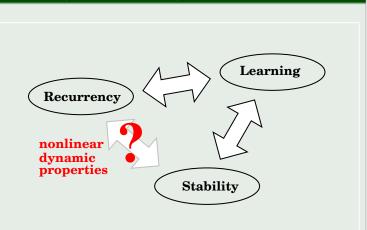
Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Recurrency versus Stability



◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

Computation Based on Fixed Reservoirs

• Liquid State Machine,

[Natschläger et al.,

Neural Computation 2002]

• Echo State Networks,

[Jaeger, NIPS 2002]

• BPDC Networks,

[Steil, IJCNN 2004]

うつつ 川 山 マ マ マ マ マ マ マ マ マ マ マ マ

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

A New Approach to Recurrent Networks

- fully recurrent networks
- discrete time:

$$ec{\kappa}(k\!+\!1) = W \tanh(ec{x}(k)) + ec{u}(k)$$

continuous time via Euler step

Task: Learning of Time Series, Trajectories

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

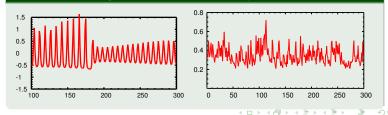
A New Approach to Recurrent Networks

- fully recurrent networks
- discrete time:

$$ec{\kappa}(k\!+\!1) = W \tanh(ec{x}(k)) + ec{u}(k)$$

continuous time via Euler step

Task: Learning of Time Series, Trajectories



Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

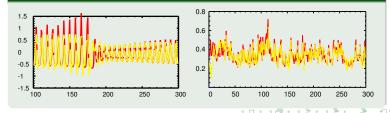
A New Approach to Recurrent Networks

- fully recurrent networks
- discrete time:

$$ec{\kappa}(k\!+\!1) = W \tanh(ec{x}(k)) + ec{u}(k)$$

continuous time via Euler step

Task: Learning of Time Series, Trajectories



Learning Recurrent Dynamics

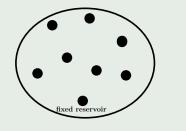
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC reservoir network



Learning Recurrent Dynamics

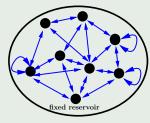
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC reservoir network



fixed connections in blue

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - のへぐ

Learning Recurrent Dynamics

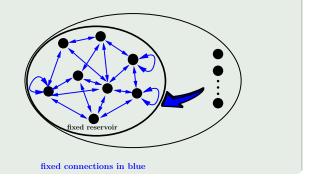
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC reservoir network



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Learning Recurrent Dynamics

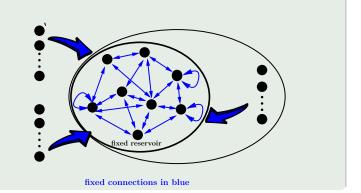
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC reservoir network



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Learning Recurrent Dynamics

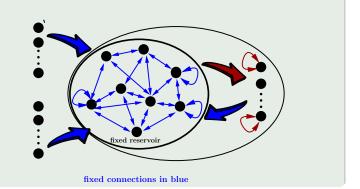
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC reservoir network



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Learning Recurrent Dynamics

Motivation

BPDC Networks

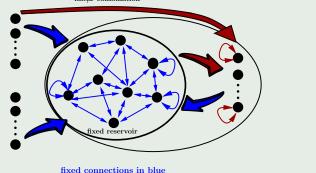
Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC reservoir network

trainable connections in red

linear combination



Learning Recurrent Dynamics

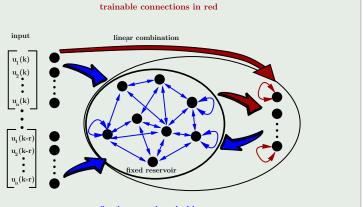
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC reservoir network



fixed connections in blue

Learning Recurrent Dynamics

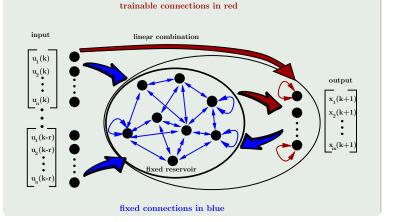
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC reservoir network



BPDC Learning

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BackPropagation-DeCorrelation Learning Rule

$$\Delta w_{1j}(k+1) = \eta \frac{\tanh(x_j(k))}{\sum_s \tanh(x_s(k))^2 + \epsilon} \gamma_1(k+1)$$

BPDC Learning

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BackPropagation-DeCorrelation Learning Rule

$$\Delta w_{1j}(k+1) = \eta \frac{\tanh(x_j(k))}{\sum_s \tanh(x_s(k))^2 + \epsilon} \gamma_1(k+1)$$

Error Backpropagation (Error $e_1 = y_{net} - y_{target}$)

 $\gamma_1(k+1) = w_{11} \tanh'(x_1(k))e_1(k) - e_1(k+1)$

BPDC Learning

Learning Recurrent Dynamics

Motivation

BPDC Networks

BPDC Learning Intrinsic Plasticity

Perspectives Applications

BackPropagation-DeCorrelation Learning Rule

$$\Delta w_{1j}(k+1) = \eta \frac{\tanh(x_j(k))}{\sum_s \tanh(x_s(k))^2 + \epsilon} \gamma_1(k+1)$$

Error Backpropagation (Error $e_1 = y_{net} - y_{target}$)

 $\gamma_1(k+1) = w_{11} \tanh'(x_1(k))e_1(k) - e_1(k+1)$

Decorrelation Factor

$$\frac{\tanh(x_j(k))}{\sum_s \tanh(x_s(k))^2 + \epsilon} = C_k^{-1} \operatorname{tanh}(\vec{x}(k))$$
$$C_k = [\tanh(\vec{x}(k))] [\tanh(\vec{x}(k))]^T + \epsilon I$$

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

Minimize Quadratic Error for Reference Signal d(k)

$$\Xi = \sum_{k} (x_1(k) - d_1(k))^2$$

subject to

 $\vec{g}(k+1) = -\vec{x}(k+1) + (1-\Delta t)\vec{x}(k) + \Delta tW \tanh(\vec{x}(k)) = 0$

Virtual Target for States

$$\Delta \mathbf{x}_{\text{tar}} = -\left(\frac{\partial E}{\partial \mathbf{x}}\right)^T = -\left(\mathbf{e}^T(1), \dots, \mathbf{e}^T(K)\right)^T,$$

with error $\mathbf{e}_i(k) = \begin{cases} \mathbf{x}_i(k) - \mathbf{d}_i(k), & i = 1\\ 0, & i \neq 1 \end{cases}$

Motivation

BPDC Networks

BPDC Learning Intrinsic Plasticity

Perspectives Applications

Virtual Teacher Forcing

use constraint equation

$$\frac{\partial g}{\partial \mathbf{w}} \Delta \mathbf{w} + \frac{\partial g}{\partial \mathbf{x}} \Delta \mathbf{x} = \mathbf{0} \quad \Rightarrow \quad \frac{\partial g}{\partial \mathbf{w}} \Delta \mathbf{w} = -\frac{\partial g}{\partial \mathbf{x}} \Delta \mathbf{x}.$$

and solve

$$\Delta \mathbf{w}_{\text{batch}} = -\eta \left(\frac{\partial g}{\partial \mathbf{w}}\right)^{\#} \frac{\partial g}{\partial \mathbf{x}} \Delta \mathbf{x}_{\text{tar}},$$
$$\Delta \mathbf{w}_{\text{batch}} = -\eta \left[\left(\frac{\partial g}{\partial \mathbf{w}}\right)^{T} \left(\frac{\partial g}{\partial \mathbf{w}}\right) \right]^{-1} \left(\frac{\partial g}{\partial \mathbf{w}}\right)^{T} \frac{\partial g}{\partial \mathbf{x}} \Delta \mathbf{x}_{\text{tar}}$$

The

Neuroinformatics Group

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □▶

Learning Recurrent Dynamics

Motivation

BPDC Networks Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

BPDC-Interpretation

$$\Delta \mathbf{w}_{\text{batch}} = -\eta \left[\left(\frac{\partial g}{\partial \mathbf{w}} \right)^T \left(\frac{\partial g}{\partial \mathbf{w}} \right) \right]^{-1} \left(\frac{\partial g}{\partial \mathbf{w}} \right)^T \frac{\partial g}{\partial \mathbf{x}} \Delta \mathbf{x}_{\text{tar}}$$

 $= -\eta [\text{correlation matrix}]^{-1} (\text{state vector}) (\text{error term})$

 $= -\eta$ decorrelation-backpropagation

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

Scaled Error Correction

$$\Delta w_{1j}(k+1) = \frac{\eta}{\sum_{s} \tanh(x_s(k))^2 + \epsilon} \tanh(x_j(k))\gamma_1(k+1)$$

= scaling × input × error

where $\gamma_1(k+1)$ is a modified error:

 $\gamma_1(k+1) = w_{11} \tanh'(x_1(k))e_1(k) - e_1(k+1)$

▲ロト ▲□ ▶ ▲ヨ ▶ ▲ヨ ▶ □ ● ○○○

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

Scaled Error Correction

$$\Delta w_{1j}(k+1) = \frac{\eta}{\sum_{s} \tanh(x_s(k))^2 + \epsilon} \tanh(x_j(k))\gamma_1(k+1)$$

= scaling × input × error

where $\gamma_1(k+1)$ is a modified error:

 $\gamma_1(k+1) = w_{11} \tanh'(x_1(k))e_1(k) - e_1(k+1)$

HRI Europe Honda Research Institute

Why such strange error ?

Learning Recurrent Dynamics

Motivation

BPDC Networks Reservoir Networks

BPDC Learning Intrinsic Plasticity

Perspectives Applications

•
$$x(1), e(0) = 0$$

Learning Recurrent Dynamics

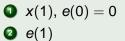
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

Step	by Step	
------	---------	--



Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

- x(1), e(0) = 0
- 2 e(1)

3
$$\Delta x(1) \sim -\frac{\partial E}{\partial x(1)} = -e(1)$$

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

- x(1), e(0) = 0
- 2 e(1)
- 3 $\Delta x(1) \sim -\frac{\partial E}{\partial x(1)} = -e(1)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

- x(1), e(0) = 0
- 2 e(1)
- 3 $\Delta x(1) \sim -\frac{\partial E}{\partial x(1)} = -e(1)$
- k = 2 (without applying w(1) step !)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

- x(1), e(0) = 0
- 2 e(1)
- 3 $\Delta x(1) \sim -\frac{\partial E}{\partial x(1)} = -e(1)$
- $\Delta w(1): [x(0), w(1)] \rightarrow x(1) + \eta \Delta x(1)$
- k = 2 (without applying w(1) step !)
- $x(2) \leftarrow (w(1), x(1))$

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

Step by Step

- x(1), e(0) = 0
- 2 e(1)
- 3 $\Delta x(1) \sim -\frac{\partial E}{\partial x(1)} = -e(1)$
- k = 2 (without applying w(1) step !)
- **③** $x(2) \leftarrow (w(1), x(1))$
- \$\gamma(2) = -e(1) + effect of not applied \$\Delta x\$ from \$k = 1\$
 \$\lambda\$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

BPDC Learning Intrinsic Plasticity

Perspectives Applications

Non-homogeneous Reservoir

- randomized thresholds provide richer dynamics
- randomized thresholds preserve stability

Learning Recurrent Dynamics

Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

Non-homogeneous Reservoir

- randomized thresholds provide richer dynamics
- randomized thresholds preserve stability

Motivates Intrinsic Plasticity

- mechanism motivated by neurobiological studies
- information maximization principle
- Ionger time-scale
- autonomous self-regulation
- minimize Kullback-Leiber distance to exponential distribution

Gradient Rule

Learning Recurrent Dynamics

Motivation

BPDC Networks Reservoir Networks BPDC Learning

Intrinsic Plasticity Perspectives Applications

Minimize Kullback-Leibler Distance to Exponential

• use gradient rule for fermi function

$$y = \operatorname{fermi}(x, a, b) = \frac{1}{1 + \exp^{(-a \cdot x - b)}}$$
$$\Delta b = \eta \left(1.0 - (2 + \frac{1.0}{\mu})y + \frac{1.0}{\mu}y^2 \right);$$
$$\Delta a = \eta \left(\frac{1.0}{a} + x - (2 + \frac{1.0}{\mu})xy + \frac{1.0}{\mu}xy^2 \right);$$
$$\Delta a = \eta \left(\frac{1.0}{a} \right) + \Delta b > 0$$

• introduced by [Triesch, ICANN 2005]

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

The

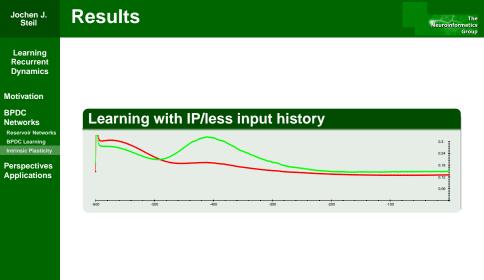
Neuroinformatics Group

Jochen J. Steil	Results		The Neuroinformatics Group
Learning Recurrent Dynamics			
Motivation			
BPDC Networks Reservoir Networks BPDC Learning	Learning without IP		0.3 I
Intrinsic Plasticity			0.24
Perspectives Applications			0.18 0.12 0.06
	-600 -600 -400	-300 -200 -100	

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Jochen J. Steil	Results				The Neuroinformatics Group
Learning Recurrent Dynamics					
Motivation					
BPDC Networks Reservoir Networks	Learning	with IP			
BPDC Learning Intrinsic Plasticity					0.3
Perspectives Applications					0.18
	-600	-500 -400	 	-100	0.06

▲□▶▲□▶▲目▶▲目▶ 目 のへの



Results

Learning Recurrent Dynamics

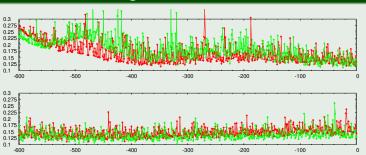
Motivation

BPDC Networks

Reservoir Networks BPDC Learning Intrinsic Plasticity

Perspectives Applications

1/1000 random weights



Tradeoffs

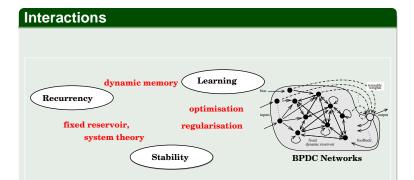
Learning Recurrent Dynamics

Motivation

BPDC Networks Reservoir Networks

BPDC Learning Intrinsic Plasticity

Perspectives Applications



Recurrent Learning Beyond Gradient Descent

- use virtual teacher \rightarrow short term error propgation
- use intrinsic plasticity \rightarrow longer term adaptation
- interaction of mechanisms on two scales
- stability preservation

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Encoding

Mechanisms

Representation Application

Work done at HRI

Three kinds of questions

• What is the nature of the encoding ?

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Encoding

Mechanisms

Representation

Application

Work done at HRI

Three kinds of questions

- What is the nature of the encoding ?
- How do the learning mechanisms interact ?

▲ロト ▲□ ト ▲ヨト ▲ヨト ヨー のへで

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Encoding Mechanisms

Representation

Application

Work done at HRI

Three kinds of questions

- What is the nature of the encoding ?
- How do the learning mechanisms interact ?
- What is represented ?

Applications

time series prediction

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Encoding Mechanisms

Representation

Application

Work done at HRI

Three kinds of questions

- What is the nature of the encoding ?
- How do the learning mechanisms interact ?
- What is represented ?

Applications

- time series prediction
- generative modeling of data from observing humans

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Encoding Mechanisms

Representation

Application

Work done at HRI

Three kinds of questions

- What is the nature of the encoding ?
- How do the learning mechanisms interact ?
- What is represented ?

Applications

- time series prediction
- generative modeling of data from observing humans
- support movement perception by prediction

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Encoding Mechanisms

Representation

Application

Work done at HRI

Three kinds of questions

- What is the nature of the encoding ?
- How do the learning mechanisms interact ?
- What is represented ?

Applications

- time series prediction
- generative modeling of data from observing humans
- support movement perception by prediction
- data from (physics based) robot simulation

Jochen J. Steil	Encoding	Th Neuroinformatic Grou
Learning Recurrent Dynamics		
Motivation		
BPDC Networks Perspectives Applications Rechaisms Representation Application Work done at HRI	 dynamic shift between linear/nonlinear modeling 	

・ロト・日本・山下・山下・山下・山下・山下

Jochen	J.
Steil	

Encoding

▲ロト ▲□ ト ▲ヨト ▲ヨト ヨー のへで

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications

Encoding

Mechanisms Representation Application

Work done at HRI

dynamic shift between linear/nonlinear modelingmulti-signal learning on one reservoir is possible

Encoding

▲ロト ▲□ ト ▲ヨト ▲ヨト ヨー のへで

Learning Recurrent Dynamics

Motivation

BPDC Networks

- Encoding
- Mechanisms Representation
- Application
- Work done at HRI

- dynamic shift between linear/nonlinear modeling
- multi-signal learning on one reservoir is possible
- multi-dimensional learning on one reservoir is possible

Encoding

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

- Encoding
- Mechanisms Representation Application
- Work done at HRI

- dynamic shift between linear/nonlinear modeling
- multi-signal learning on one reservoir is possible
- multi-dimensional learning on one reservoir is possible
- IP tends to change neurons to threshold units

Encoding

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

- Encoding
- Mechanisms Representation Application
- Work done at HRI

- dynamic shift between linear/nonlinear modeling
- multi-signal learning on one reservoir is possible
- multi-dimensional learning on one reservoir is possible
- IP tends to change neurons to threshold units
- measure correlation/decorrelation is difficult

Encoding

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

- Encoding
- Mechanisms Representation Application Work done at HRI

- dynamic shift between linear/nonlinear modeling
- multi-signal learning on one reservoir is possible
- multi-dimensional learning on one reservoir is possible
- IP tends to change neurons to threshold units
- measure correlation/decorrelation is difficult
- \Rightarrow how generic is the feature machine ?

Jochen J. Steil	Mechanisms
Learning Recurrent Dynamics	
Motivation	
BPDC Networks	
Perspectives Applications	
Encoding Mechanisms Representation Application Work done at HRI	 IP tends to change neurons to threshold units HRunner

Jochen J. Steil	Mechanisms
Learning Recurrent Dynamics	
Motivation	
BPDC Networks	
Perspectives Applications Encoding Mechanisms Representation Application Work done at HRI	 IP tends to change neurons to threshold units IRI. local vs. global learning: how to measure contributions

Jochen J. Steil	Representation
Learning Recurrent Dynamics	
Motivation	
BPDC Networks	
Perspectives Applications Encoding Mechanisms Representation Application Work done at HRI	does the reservoir learnsingle trajectories ?

The Neuroinformatics Group

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Jochen J. Steil	Representation
Learning Recurrent Dynamics	
Motivation	
BPDC Networks	
Perspectives Applications	does the reservoir learn
Encoding Mechanisms	single trajectories ?
Representation	č ,
Application	an operator ?
Work done at HRI	·

<ロト < 回 ト < 三 ト < 三 ト < 三 の < で</p>

The Neuroinformatics Group

Jochen J. Steil	Representation
Learning Recurrent Dynamics	
Motivation	
BPDC Networks	
Perspectives Applications	does the reservoir learn
Encoding Mechanisms	single trajectories ?
Representation Application	• an operator ?
Work done at HRI	• the underlying system dynamics ?

The Neuroinformatics Group

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Jochen	J.
Steil	

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications Encoding Mechanisms Representation Application

Work done at HRI

does the reservoir learn

- single trajectories ?
- an operator ?
- the underlying system dynamics ?

How to quantize, with which experiments ?

Jochen J. Steil	Application
Learning Recurrent Dynamics	
Motivation	
BPDC Networks	
Perspectives Applications Encoding Mechanisms Representation Application Work done at HRI	 next step: labeled multi-dimensional kinematic robot data

シック 単 エル・ボット 中国・エロ・

Jochen J. Steil	Application	The natics Group
Learning Recurrent Dynamics		
Motivation BPDC Networks		
Perspectives Applications Encoding Mechanisms Representation Application Work done at HRI	 next step: labeled multi-dimensional kinematic robot data build classification architecture based on prediction error 	

÷

Jochen J. Steil	Application The Veuroinformatics Group
Learning Recurrent Dynamics	
Motivation	
BPDC Networks	
Perspectives Applications Encoding Mechanisms	 next step: labeled multi-dimensional kinematic robot data
Representation Application Work done at HRI	 build classification architecture based on prediction error
	• what is the convincing application demonstration ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Learning Recurrent Dynamics

Motivation

BPDC Networks

Perspectives Applications Encoding Mechanisms Representation Application Work done at HRI

- setup of environment NEO/NST, mysql, gcc
- implement and test of multidimensional case
- interpretation as error correction
- monitor discrete coding of IP
- clustering sequences for labeling with SOM-SD (ongoing project)

