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Abstract. Locally Linear Embedding (LLE) has recently been proposed
as a method for dimensional reduction of high-dimensional nonlinear
data sets. In LLE each data point is reconstructed from a linear com-
bination of its n nearest neighbors, which are typically found using the
Euclidean Distance. We propose an extension of LLE which consists in
performing the search for the neighbors with respect to the geodesic dis-
tance (ISOLLE). In this study we show that the usage of this metric can
lead to a more accurate preservation of the data structure. The proposed
approach is validated on both real-world and synthetic data.

1 Introduction

The analysis of complex high-dimensional data structures is essential in many
real-world applications, including medical high resolution time-series data. Al-
gorithms for dimensional data reduction are particularly useful for discerning
the information contained in a high-dimensional data structure.

In recent years several methods for the analysis of nonlinear data sets have
been proposed, including Locally Linear Embedding (LLE) [1]. LLE has already
been successfully applied to many problems, including face recognition [2], pre-
diction of membrane protein types [3] and the analysis of micro array data [4].
The algorithm assumes linearity in the local area centered on each data point.
Each area is mathematically characterized by a set of coefficients (weights) which
correlate the particular data point with its n nearest neighbors. The aggrega-
tion of all areas can be intuitively thought as an assemblage of linear patches
which approximates the nonlinear data structure. The high-dimensional data is
then projected into a lower-dimensional space while preserving the coefficients
between neighboring data points.

The number of neighbors n strongly influences the accuracy of the linear
approximation of nonlinear data. Specifically, the smaller n, the smaller the
area, the more faithful is the linear approximation. However, if these areas are
disjoint, LLE can fail to detect the global data structure [5]. Disjoint areas can
be obtained especially when the data is sparse or spread among multiple clusters.
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Fig. 1. The short circuit induced by Euclidean distance is shown on the left. In case
the number of neighbors n is set to a relative high value, the two points in figure can
be treated as neighbors, although they are on the opposite parts of the horseshoe. This
may cause LLE to fail to detect the real global structure of the data. On the right
are shown the benefits of the geodesic distance. In this case the two points are not
neighbors, as they are faraway according to the geodesic distance.

To address this problem, in [6] it is proposed to search for the n/2 nearest and
n/2 furthest neighbors of each data point. Another approach is given in [7],
where the authors suggest to connect the disjoint manifold or interpolating the
embeddings of some samples.

In general, for larger values of n the linear areas are more likely to overlap.
The number of neighbors n therefore needs to be sufficiently high to satisfy this
condition. On the other hand, as the neighbors search is typically conducted
using the Euclidean distance, this may lead a data point to have neighbors which
are instead very distant as one considers the intrinsic geometry of the data. More
intuitively, one can imagine this fact as a short circuit (see Fig. 1). The presence
of short circuits is undesirable, as they can cause LLE to misinterpret the actual
data structure.

To address the above outlined problems occurring to LLE when employed
with a high number of neighbors, we propose the usage of LLE with geodesic
distance (ISOLLE). More specifically, the n nearest neighbors are searched with
respect to the geodesic distance. This metric has already been employed in other
methods for nonlinear dimensional data reduction such as Isomap [8], Curvi-
linear Distance Analysis [9] and Self-organizing Maps [10]. The geodesic distance
between two data points can be intuitively thought as their distance along the
contour of an object (see Fig. 1 right). For example let us consider the distance
between Paris and New York. Their geodesic distance is the distance along the
curvature of the Earth. Their Euclidean distance instead is the length of the
straight line connecting the two cities which is below the level of the ground.
Points faraway from each other, as measured by the geodesic distance, may
appear deceptively close in the high-dimensional input space as measured by the
Euclidean distance.

In this work we demonstrate that the employment of the geodesic distance
can lower the probability to create short circuits during the neighbors search,
thereby allowing for a more accurate dimensional reduction. Our approach to
investigate the performances of ISOLLE as compared to conventional LLE is
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basically twofold. Firstly, we perform the analysis on synthetic data, namely a
three-dimensional swissroll which was also used in [1] and [8]. By this phan-
tom data set we illustrate the difference between both techniques. Secondly, we
analyze a complex, medical real-world data set acquired using dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI). DCE-MRI involves the re-
peated imaging of a region of interest, in our case the female breast with tumor
lesions, after the administration of a contrast agent, yielding a high-dimensional
spatio-temporal data structure.

Both data sets are reduced to two dimensions using different values of the
number of neighbors n. The dimensional reduction of the swissroll is evaluated
qualitatively, while the analysis of the tumor data set requires a statistical ap-
proach because of the complexity of the data. Specifically for this purpose we
consider the percentage of nearest points in the original space that are preserved
as nearest neighbors in the dimensional reduced space, and the stress induced
by the dimensional reduction. In addition, in the final part the running times of
LLE and ISOLLE are compared.

2 Locally Linear Embedding (LLE)

The LLE algorithm is based on three steps involving standard methods of li-
near algebra. Its input comprises N D-dimensional vectors {Xi}. The first step
consists in searching for the n nearest neighbors of each data point.

Once the neighbors are determined, by minimizing the following error fun-
ction (step 2)

Ψ(W ) =

N∑

i=1

|Xi −

n∑

j=1

WijXj |
2 (1)

subject to the constraint
∑n

j=1
Wij = 1, one obtains the weights {Wij} that

best allow to reconstruct each data point from its neighbors. With the above
constraints, Eq. (1) can be simplified to a linear system and the weights can
be computed in closed form as follows: given a particular data point Xi with
n-nearest neighbors Xj and reconstruction weights Wj that sum to one, we can
write the reconstruction error as

Ψ(W ) =
N∑

i=1

|Xi −
n∑

j=1

WjXj |
2 =

∑

jk

WjWkCjk. (2)

In the second identity, the term

Cjk = (Xi −Xj) · (Xi −Xk) (3)

is the local covariance matrix. The weights which minimize the error function of
Eq. (1) are given by:

Wj =

∑
k C−1

jk∑
lm C−1

lm

, l,m ∈ {1, .., n}. (4)
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In some cases, for example if the number of neighbors is greater than the input
dimension (n > D), it arises that the matrix C is singular or nearly singular
and the solution of Eq. (2) is not unique. In this case the matrix C must be
conditioned by adding a small multiple of the identity matrix [11]:

Cij ← Cij + δijΓ (5)

where Γ is defined as

Γ =
Tr(C)

n
∆2. (6)

The term ∆ is a correction parameter set by the user and its value must be much
smaller than 1.

The third and last step of the LLE algorithm consists in mapping each data
point Xi to a low dimensional vector Yi, such that the following embedding
error function is minimized:

Φ(Y ) =

N∑

i=1

|Yi −

n∑

j=1

WijYj |
2 (7)

under the conditions 1

N

∑N

i=1
YiY

T
i = I and

∑N

i=1
Yi = 0, which provide a

unique solution. Note that the weights are kept constant in order to preserve
the local neighborhood of each data point. The most straightforward method for
computing the M -dimensional coordinates is to find the bottom M + 1 eigen-
vectors of the sparse matrix

S = (I −W )T (I −W ). (8)

These eigenvectors are associated with the M + 1 smallest eigenvalues of S. The
bottom eigenvector is related to the smallest eigenvalue whose value is closest
to zero. This eigenvector is the unit vector with all equal components and is
discarded.

3 The ISOLLE algorithm

The ISOLLE algorithm differs from LLE only in the first step, i.e. the neighbors
search. More specifically, ISOLLE computes the n nearest neighbors of each data
point according to the geodesic distance. For this purpose we employ a small
variation of Dijkstra’s algorithm [12]. Given a graph, this algorithm computes
the shortest paths from a particular node to all remaining nodes. In our case we
restrict the computation to the n shortest paths.

In practice, the process of finding the geodesic neighbors is composed of
two phases. The first phase consists in constructing a weighted graph G over the
data set where neighboring data points are connected. In principle, any similarity
measure dE can be adopted to determine neighboring relations, and probably
the Euclidean distance is the most common choice. Two points are neighbors if
are closer than a fixed distance ε (ε-graph), or one is the K nearest point of the
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other (K-graph). These relations between neighbors are represented by edges of
weights dE(Xi,Xj) [8].

In the second phase the n nearest neighbors of each data point are found
according to the geodesic distance computed by Dijkstra’s algorithm. This algo-
rithm begins at a specific node (source vertex) and extends outward within the
graph until all the vertices have been reached (in our case only the n nearest
nodes). Dijkstra’s algorithm creates labels associated with vertices. These labels
represent the distance (cost) from the source vertex to that particular vertex.
Within the graph, there exists two kinds of labels: temporary and permanent.
The temporary labels are given to vertices that have not been reached. The value
given to these temporary labels can vary. Permanent labels are given to vertices
that have been reached and their distance (cost) to the source vertex is known.
The value given to these labels is the distance (cost) of that vertex to the source
vertex. For any given vertex, there must be a permanent label or a temporary
label, but not both. An animated example of Dijkstra’s algorithm can be seen
at [13]. Both steps of the neighboring search are detailed in the following:

Construct the neighborhood graph: define the graph G over all data points
by connecting points Xi and Xj if (as measured by dE(Xi,Xj)) they are
closer than ε, or if Xi is one of the K nearest neighbors of Xj . Set edge
lengths equal to dE(Xi,Xj).

Compute n nearest points with Dijkstra’s algorithm: given a graph
G=(V,E) where V is a set of vertices and E a set of edges, Dijkstra algorithm
keeps two sets of vertices:

S −the set of vertices whose shortest paths from the source vertex have
already been determined. These vertices have a permanent label

V-S −the remaining vertices. These have a temporary label

The other data structures needed are:

X0 −initial beginning vertex (source vertex)

N −number of vertices in G

D −array of estimates of shortest path to X0.

The basic mode of operation of Dijkstra’s algorithm is:

1 S={X0}

2 For i=1 to N
D[i]=E[X0,i]

3 For i=1 to N -1
Choose a vertex w in V-S such that D[w] is minimum and add it to S
For each vertex v in V-S

D[v]=min(D[v],D[w]+E[w,v])

The construction of graph G requires a further parameter (ε or K) to be set by
the user. In [8] it is pointed out the scale-invariant parameter K is typically easier
to set than ε, but may yield misleading results when the local dimensionality
varies across the data set. A sensible way to set this parameter can be to choose
the minimal value such that all the pairwise geodesic distances are finite.
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4 Data sets

The performances of ISOLLE and LLE are tested on two data sets whose num-
bers of points are displayed in table 1. The first data set is a three-dimensional
synthetic distributions, namely a swissroll (Fig. 2(a)). The second is a real-world
data set comprising the signal intensity values obtained by dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) on female breast with tumor.

The DCE-MRI technique consists in acquiring a sequence of images (six
in our case) from a region of interest (the female breast in our case), whose
movement is carefully restricted, over time in order to monitor the dynamic of a
previous injected contrast agent within the tissue. As a result, tissue types with
higher level of vascularity have enhanced values of signal intensity, proportionally
to the amount of absorbed contrast agent. After the acquisition of the images,
a time-series of intensity values is correlated with each voxel (see Fig. 2(b)).
As benign and malignant tumor tissues are expected to differ in the level of
vascularization, the respective contrast characteristics are expected to exhibit
different behaviors.

The tumor data set in this work comprises the time-series relative to six be-
nign and six malignant cancerous lesions which were labeled and pathologically
analyzed by an expert physician. The discrimination between benign and malig-
nant lesions in DCE-MRI is a particularly challenging and delicate problem in
light of the relatively high rate of false positive cases characterizing this imaging
technique, as published in the literature [14]. In this study the time-series asso-
ciated with the voxel of each tumor is treated as a data point in a six-dimensional
signal space. It is therefore interesting to project this six-dimensional space in
two dimensions in order to visualize how benign and malignant data differs from
each other.

5 Method for comparing ISOLLE and LLE

The difference between LLE and ISOLLE are illustrated by considering the three-
dimensional swissroll. At first we visualize the neighbors graphs obtained by LLE
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Fig. 2. (a) Three-dimensional swissroll data set. (b) In DCE-MRI, a time-series of MR
signal intensity values is associated with each voxel.
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Table 1. Data sets investigated in this study

Data set Number of points Dimension

Swissroll 1000 3

DCE-MRI breast tumor data 2449 6

and ISOLLE with different values of n in order to highlight the advantages of the
geodesic distance. Each graph is obtained by connecting each data point with its
n neighbors by an edge (note that this is not the graph G used to compute the
geodesic distances and described in section 3). This allows us to check for the
possible presence of short circuits induced by the neighbors search. The effects of
these short circuits are then qualitatively evaluated by visualizing the respective
two-dimensional projections.

The evaluation of the dimensional reduction of the tumor data set requires
a statistical analysis, as the output can not be predicted a priori because of the
complexity and multi-dimensional nature of the data, and consequently it is not
possible to visually evaluate the accuracy of the low-dimensional projection.

The quality of the tumor data embeddings is estimated by means of two
numerical quantities, namely neighborhood preservation (NP) and stress (ST).
The first quantity is given by the average percentage of neighbors which are
preserved after the dimensional reduction. It is defined as

NP =
1

V

V∑

i=1

pt(Xi) (9)

where pt(Xi) is the percentage of the t-nearest neighbors of point Xi in the
original space which are preserved in the low-dimensional space. For example, if
only 25% of its t-nearest neighbors are preserved in the embedding, then pt(Xi)
will equal 0.25. In this work we use t = 5. A high value of NP (close to 1)
denotes a good preservation of the local relations between data points in the
low-dimensional space.

Stress reflects the preservation of the global structure of the original data set
in the embedding. More specifically, it quantifies the overall deviation (i. e. the
extent to which they differ) between the distances in the original and embedded
space [15]. Let Xi and Xj be two data points; their distance in the original and
in the embedding space are indicated by d(Xi,Xj) and δ(Xi,Xj), respectively.
Stress is typically defined in terms of variance as

ST =

∑
Xi,Xj

(δ(Xi,Xj)− d(Xi,Xj))
2

∑
Xi,Xj

d(Xi,Xj)2
. (10)

Prior to the computation of the value of stress, both the original and embedded
coordinates are scaled to [0,1] in order to allow for a correct comparison between
different embeddings. Low values of stress (close to 0) reflect a good preservation
of the original pairwise distances in the low dimensional space.
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6 Experiments

Graph G is computed by setting ε to the minimal possible value such that all
the pairwise distances are finite. These values empirically found for each data
set are: ε(swissroll)=5; ε(tumor data)=90.

The two data sets are reduced to two dimensions by LLE and ISOLLE with
the number of neighbors n varying between 5 and 40.

7 Results and discussion

In Fig. 3 one can see the neighbors graphs of the swissroll. It is obvious that
already with n = 15 LLE with Euclidean distance meets some short circuit effects
in the neighbors search. With n = 40 the number of short circuits increases
noticeably. By contrast, the graphs relative to ISOLLE do not present short
circuit effects, even when the number of neighbors n equals 40. This shows that
the usage of the geodesic distance can drastically reduce the number of short
circuits.

Possible effects of these short circuits on the two-dimensional projection of
the swissroll data set can be seen in Fig. 4. Here it is clear that LLE fails to
preserve the global structure of the data with n = 15 and in particular n = 40,
as in both cases the darkest points are mapped close to brighter points. On the
contrary, ISOLLE can correctly unfold the swissroll in all three cases, and the
structure of the data is clearly preserved. In particular, the ISOLLE projection is
also accurate with n = 40, while the respective LLE projection results completely
incorrect.

ISOLLE n=40

LLE n=6 LLE n=40LLE n=15

ISOLLE n=15ISOLLE n=6

Fig. 3. Neighbors graphs of the swissroll data set. In the LLE graph with n = 15
there are already short circuits. Their number considerably increases with n = 40.
Conversely, in all the ISOLLE graphs there are no short circuits.
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LLE n=40LLE n=15

ISOLLE n=40ISOLLE n=15ISOLLE n=6

LLE n=6

Fig. 4. Two-dimensional reductions of the swissroll data set. While LLE fails to pre-
serve the structure of the swissroll with n ≥ 15, ISOLLE yields a good projection of
the data in all cases.

The evaluation of dimensional reduction of the tumor data set is conducted
by taking into account the neighborhood preservation and stress measures. Their
average values with the respective variances computed with respect to n com-
prised between 5 and 40 are displayed in table 2. The projections by ISOLLE
result better with respect to both quantities. Indeed, the average ST value is
lower than the one by LLE, suggesting that ISOLLE better preserves the metric
of the tumor data. The higher value of the average NP by ISOLLE gives evidence
that this algorithm also leads to a better preservation of the topology of the data.
Two scatter plots of the DCE-MRI breast data embeddings obtained by LLE
and ISOLLE with n = 20 are shown in Fig. 5. Interestingly, the benign cluster
in the projection by ISOLLE appears more localized and compact than in the
projection by LLE. Moreover, benign and malignant data overlap more in the
projection by LLE. This indicates that ISOLLE can better separate benign from
malignant data and this is of considerable value from the medical point of view.
In addition, the compactness of the benign cluster in the ISOLLE projection
shows that benign tumors are rather homogeneous, while the malignant ones

Table 2. Average and variance values of stress (ST) and neighborhood preserva-
tion(NP) computed for the tumor data set.

ST(LLE) ST(ISOLLE) NP(LLE) NP(ISOLLE)

0.454±0.034 0.337 ± 0.025 0.081±0.001 0.115 ± 0.002
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LLE ISOLLE

Fig. 5. Two scatter plots of the two-dimensional embeddings of the DCE-MRI breast
data set obtained by LLE and ISOLLE. In both cases n equals 20. Note that the benign
and malignant clusters overlap much less in the ISOLLE embedding. In particular, here
the benign cluster is more compact and localized.

are more heterogeneous, in agreement with the clinical experience of physicians
[16].

Finally, we compare the performances of LLE and ISOLLE is terms of running
time. Both algorithms were run with different n on a Pentium IV 2.8 GHz. The
respective values of running times are shown in table 3. The ISOLLE algorithm
involves a larger computation time and the divergence of speed becomes more
marked as n increases. The higher computational time of ISOLLE is somewhat
expected as the algorithm requires a further step as compared to LLE, i. e. the
construction of the neighborhood graph over all data points.

In general, the usage of ISOLLE should be preferred to LLE in particular
when n needs to be relatively high (for example in case of sparse or clustered
data) and in turn short circuits are more likely to occur. One way to determine
if a certain data set requires a relatively high value of n is to perform an analysis
of the smallest eigenvalues of matrix S from eq. (8). Specifically, in standard
conditions matrix S has only one eigenvalue close to 0. However, if n is so
small that the linear areas are disjoint, then matrix S will have more than one
close-to-zero eigenvalue [5]. Therefore, the minimum n for which S has only

Table 3. Table of the running times in seconds.

n Swissroll DCE-MRI
LLE ISOLLE LLE ISOLLE

10 0.20 2.66 1.26 16.55
20 0.23 6.32 1.39 39.24
30 0.27 11.25 1.62 69.31
40 0.30 17.29 1.75 106.37
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one eigenvalue close to 0 can be taken into account in order to evaluate which
algorithm is more suited for the data analysis.

8 Conclusions

In this study we propose a new approach to the neighbor search in LLE based
on the geodesic distance. Its usage can reduce the number of short circuits con-
siderably, thereby improving the preservation of the data structure. We show
this by investigating the neighbors graphs obtained by LLE and ISOLLE on a
synthetic three-dimensional swissroll. The ISOLLE graphs do not exhibit short
circuits, even when the number of neighbors is high. By contrast, the standard
neighbors search with Euclidean distance in LLE causes many short circuits.
As a consequence, ISOLLE can detect the intrinsic two-dimensional structure
of the swissroll with both small and large values of the number of neighbors n.
Conversely, LLE fails to unfold the swissroll with n ≥ 15.

Regarding the dimensional reduction of the tumor data set, our results clearly
show that ISOLLE significantly outperforms LLE in terms of both stress and
neighborhood preservation. In addition, ISOLLE appears to better distinguish
between benign and malignant lesions.

Experiments concerning the running times revealed that ISOLLE is slower
than LLE and this becomes more noticeable as n increases.

In conclusion, ISOLLE exhibits a superior ability to project the investigated
data sets into a two-dimensional space while preserving the original data struc-
ture but at the cost of a larger running time.

Future work will include the comparison of the performances of LLE and
ISOLLE with respect to data sets having different density distributions, with
particular regard to sparse data.
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