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Abstract. In this paper, we first review our work in the domain of
dextrous manipulation, where we introduced Manipulation Manifolds —
a highly structured manifold representation of hand postures which lends
itself to simple and robust manipulation control schemes.

Coming from this scenario, we then present our idea of how this genera-
tive system can be naturally extended to the recognition and segmenta-
tion of the represented movements providing the core representation for
a combined system for action production and recognition.

1 Introduction

In the field of humanoid robotics, two of the key challenges are the production
of naturally looking movements on the one hand and the recognition of observed
movements or their segmentation into several meaningful subparts on the other
hand. Whereas these two problems are usually addressed independently from
each other, we believe that they are indeed closely related and that is beneficial
to base their handling on one and the same core representation of the underlying
— observed or produced — movements. Whereas such common basis for action
and perception could not be established yet in the field of robotics, it is widely
known from neurophysiology where research on monkey brains reports from
mirror neurons in the premotor cortex which not only show activity during the
monkey’s own excitations but as well during observations of the same actions
performed by another monkey (e.g. [7]).

With our work, we approached this problem from the motion production side
using motion capture data recorded from human demonstration. In this domain,
many recent approaches focus on the Gaussian Processes Latent Variable Model
(GPLVM, [4]) and variants. For example, Bitzer et al. [1] propose a methodology
for learning and synthesising classes of movements using the GPLVM and iden-
tify robust latent space control policies which allow for generating novel move-
ments. In another approach, Urtasun et al. [12] extend the GPLVM in order to
learn interpretable latent directions and transitions between motion styles.

Whereas such approaches yield very promising results for reproducing and
synthesising motion capture data, it is not clear how they can be extended for
motion recognition. For our work, we were thus looking for a method that enables
us to directly reinforce a clear and predefined structure of the latent variables
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Fig. 1. Example of a hand posture sequence corresponding to a training manipulation
of a bottle cap (r = 2.0cm). Remark the periodic nature of the movement.

which then lends itself to simple and robust control schemes. The knowledge
about this clear structure then can be exploited as well for the use as recognition
system afterwards. In the context of manifold generation, we presented modifica-
tions to a recent approach to non-linear manifold learning, namely Unsupervised
Kernel Regression (UKR, [5]), which either allow for directly incorporating prior
knowledge in a constructive manner [8] or in an automatic learning scenario [9].
As shown in [8, 9], the resulting Manipulation Manifolds then provide the desired
highly structured latent spaces and can be used as basis for reproduction and
synthesis of the represented movement class.

In this paper, we present our idea of how this generative system can be
naturally extended to the recognition of the represented movements.

The paper is organised as follows: After a description of the training data
(Sec. 2), we briefly review UKR (Sec.3) and the two methods to generate the
Manipulation Manifolds (Sec. 4 and Sec. 5). Section 6 then describes the mani-
fold characteristics which are exploited in Section 7 for the motion production.
Section 8 finally presents our idea of a recognition system based on this repre-
sentation followed by a conclusion in Section 9.

2 Manipulation Data

The training data consist of sequences of hand postures (each a 24D joint angle
vectors) recorded with a data glove during cap turning movements for differ-
ent cap radii (r=1.5¢m, 2.0cm, 2.5¢m, 3.0cm and 3.5¢m) in a physics-based
computer simulation (e.g. Fig. 1). For each radius, we produced five to nine se-
quences of about 30 to 45 hand postures each — in total 1204 for all sequences.

3 Unsupervised Kernel Regression

UKR is a recent approach to learning non-linear continuous manifolds, that is,
finding a lower dimensional (latent) representation X = (x1,...,xy) € RN of
a set of observed data Y =(y1,...,yn~) € RN and a corresponding functional
relationship y = f(x). UKR has been introduced as the unsupervised counter-
part of the Nadaraya-Watson kernel regression estimator by Meinecke et al. in
[5]. Further development has lead to the inclusion of general loss functions, a
landmark variant, and the generalisation to local polynomial regression [3]. In
its basic form, UKR uses the Nadaraya-Watson estimator [6, 13] as smooth map-
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ping from latent to observed data space (Kg: Kernel with bandwidth H):

Kp(x —x;
Z zfpéHx—ij) (1)

X = {x;},7 = 1..N now plays the role of input data to the regression function
(1) and is treated as set of latent parameters corresponding to Y. As the scaling
and positioning of the x;’s are free, the formerly crucial bandwidths H become
irrelevant and can be set to 1.

UKR training, that is finding optimal latent variables X, involves gradient-
based minimisation of the reconstruction error:

1 1
= 52 Iy feX) P= S Y -YBX) 3. ()
Here, B(X) with (B(X));; = % is an N XN basis function matriz.

To avoid poor local minima, i.e. PCA [2] or Isomap [11] can be used for
initialisation. These eigenvector-based methods are quite powerful in uncovering
low-dimensional structures by themselves. Contrary to UKR, however, PCA is
restricted to linear structures and Isomap provides no continuous mapping.

To avoid a trivial solution by moving the x; infinitively apart from each other
(B(X) becoming the identity matrix), several regularisation methods are possible
[3]. Most notably, leave-one-out cross-validation (LOO-CV: reconstructing each
yi without using itself) is efficiently realised by zeroing the diagonal of B(X)
before normalising its column sums to 1. The inverse mapping x = f~!(y; X)
can be approximated by x* = g(y; X) = argmin, ||y — f(x; X)||%.

4 Manifold construction

A simple but effective approach to generating a Manipulation Manifold is to
construct the final manifold out of several sub-manifolds each realising a manip-
ulation movement for one motion parameter (cp. [8]). In the example of turning
a bottle cap, we incorporate the progress in time of the movement and the radius
of the cap. The construction of the final manifold is performed iteratively start-
ing with a sequence associated with the smallest radius. The latent parameters
of the first 1D-UKR manifold are equidistantly distributed in a predefined in-
terval according to the chronological order of the hand postures (Fig.2(a)). The
second sequence of the same radius then is projected pointwise into the latent
space of the previous 1D-manifold. By dint of this projection, we approximate a
synchronisation of the temporal advance of the two movements. In the next step,
we combine those data to a new UKR manifold by extending the sets of observed
data and latent parameters by the new sequence data (cp. Sec.3: Y and X).
Repeating this step for all sequences of one radius yields a radius-specific 1D
manifold representing a generalised movement. Thus, by applying this method to
all sets of radius-specific sequences, we generate one 1D manifold per radius. To
promote the synchronisation of the temporal advances also between the different
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Fig. 2. Schematic description of different steps in the manifold construction process.

radius-specific manifolds, we initialise the manifolds of new radii with the projec-
tion of the observed data into the latent space of the previous radius (cp. 2(b)).
The subsequent combination of all 1D-manifolds to one 2D-manifold represent-
ing the complete movements for all training radii then is realised by expanding
each 1D latent parameter by a second dimension denoting the appropriate radius
corresponding to the associated training sequence (2(c)).

Using the radius information automatically results in the correct ordering
of the latent parameters in the new dimension. Whereas this last step always
requires meta knowledge about the training data, at the same time, it provides
a simple and effective way of incorporating prior knowledge into the manifold
generation procedure. Another benefit of directly using observed or predefined
meta data (like the cap size) as values of latent parameter dimensions is that
new data recorded after the initial training can directly be added to the manifold
in the same way and then serve to locally refine the manifold structure.

5 Manifold learning

In several cases, it is desirable to automatically learn the Manipulation Manifolds
from training sequences instead of construct them in the described way. We thus
presented extensions to original UKR training to provide implicit mechanisms
for incorporating given knowledge about training data structures [10].

In addition, to take the periodic nature of the data sequences into account,
we extended original UKR by allowing for different univariate kernels K; (with
dimension-specific parameters @;) for different latent dimensions [ (cp. Eq.2):

q K il — i @
(B(X)); = }}1 Uiy = 201
Yo 1o Ki(zey — 25,5 ©p)

As kernel for the non-periodic dimensions, we use a standard Gaussian kernel
with (inverse) bandwidth parameter ©: Ky(z; —x;;0) = exp [—360%(z; — z;)?],
and for the periodic dimensions, we proposed a sin? kernel, periodic in [0;7],
again with parameter ©: K (z; — z;;0) = exp [—46? sin?(x; — z;)].

The two key features provided by the construction described in the last sec-
tion are that (a) the chronological order of the training sequences is reflected
in the corresponding latent variables and (b) the latent representations of the
training sequences have constant values in the latent radius dimension (assuming
that the underlying movement parameters do not change within the sequences.)

In the automatic learning case, we approximate these two features by means
of penalty terms to the standard loss function (Eq.2):

(3)
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Fig. 3. Development of UKR latent variables after 0, 10, 25, and 200 steps. Connected
points represent training sequences; different colours correspond to different cap radii.

(a) In the periodic case using closed sequences of training data (x§ = x§; ),
we can express this as regularisation of the sum of successor distances:

Ns N,
.2
Eeseq(X) = Z Zsm (wgf,dt - “"E}—n,dt)- (4)
o=11i=1
for sequences S, = (y7,y9,.- .. ,y%a), 0 =1..Ngs with corresponding latent pa-
rameters (x7,x3,...,x% ). d; denotes the latent time dimension.

(b) is realised by penalising high variances in the parameter dimensions k # d;:

Ns IREL )
Eppar(X) = Z Z N Z (Cﬁfk - <5'70k>) (5)

o=1k#d, = 7 i=1
The resulting overall loss function then can be denoted as:
E(X) = R(X) + Acseq * Eeseq(X) + Apvar - Epvar(X). (6)

Fig.3 visualises an exemplary development of the latent variables using this
method and the training data described in Sec.2. For further details see [10, 9].

6 Characteristics of the Manipulation Manifold

Figure 4 visualises an exemplary Manipulation Manifold. As result of the learning
(or construction), the horizontal dimension corresponds to the temporal aspect
of the movement and the vertical dimension describes the cap size as motion
parameter (please consider the video referenced in Fig. 4). Like this, it forms a
representation of the movement of turning a bottle cap for different cap sizes that
fulfils our goal of fitting to the desired simple control strategy: the represented
movement can be produced by projecting a linear trajectory that follows the
time dimension in latent space into hand posture space.

This characteristics is realised by distorting the natural topology of the latent
space such that those parts of the movement which are independent of the cap
radius — and thus very similar for all radii (i.e. Fig. 4, the backward movement
of the hand: columns 1-3) — are pushed away from each other to span the same
latent radius range as the rest of the sequence. In contrast to this, with purely
unsupervised learning, the similar parts would collapse to thin regions in latent
space. This however would make the targeted control scheme impossible.
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Fig. 4. Visualisation of the training result in the hand posture space. The de-
picted postures correspond to the reprojections f(x;X) of regularly sampled posi-
tions x in the trained latent space. Please consider also the video available under
http://www.techfak.uni-bielefeld.de/~ jsteffen/mov/ki2009/upkrturn/.

Indeed, whereas the distortion is beneficial for the production of motions,
it poses some problems for the inverse direction, i.e. projecting hand posture
sequences into latent space. In that case, whereas the temporal information is
robust, the projection is strongly non-robust in the parameter (radius) dimension
in the described radius-independent parts as the corresponding hand postures
are fairly similar for the whole range of latent radii for a specific point in time
and the result of g('Y) can heavily vary for small changes of y.

7 Motion Production and Synthesis

The clear structure of the latent space enables the use of a very simple controller
in order to synthesise the represented movements: The algorithm starts in an
initial hand posture corresponding to a fixed latent position on the 'maximum
radius’ border of the latent space in a temporal position where the fingers have
contact with the cap. The motion controller then is subdivided into two different
phases of orthogonal, straight navigations through the latent space: (a) Grasping
the cap is realised by a straight navigation in direction of decreasing radii follow-
ing the radius dimension until thumb, fore finger and middle finger have contact.
(b) The manipulation — during which the adapted radius is fixed — is performed
by navigating through the latent space following the temporal dimension. Please
consider also the corresponding video! and [9] for further details.

8 Towards Motion Recognition and Segmentation

The recognition approach takes the inverse direction to the motion production
described in the last section: instead of projecting latent trajectories into hand
posture space in order to determine a sequence of intermediate target hand
postures, we now observe such sequences and use it as input. By projecting
them into latent space (g(-)) and back to hand posture space (f(g(-)), cp. Sec.

! http://www.techfak.uni-bielefeld.de/~jsteffen /mov /ki2009 /upkrmanip/
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3), we obtain means to define features which express the degree of compatibility
of the observed postures and the manifold:

a) The compatibility of single observations with the manifold can be ex-
pressed with the self-reconstruction error of the observations yielding a measure
for the similarity of observed and best-matching represented posture in the man-
ifold:

Crec(y*;Y) = =1 +2-exp (-ATA) € [-1;1] (7)

where A(y*) = y* — f(g(y”*)) is the self-reconstruction error of observation y*.

b) The temporal compatibility of a single observation with its preceding ob-
servations (history) can be expressed by the relative positions of the represen-
tations of the current and preceding observations in latent space: if the single
observations of the input sequence are compatible with the manifold (in the
sense of (a)), then, the compatibility of the chronological order of their latent
representations with the manifold can be expressed as the sum over the distances
between projections of successive data. As a measure for the compatibility of the
observation y;_j in the history of y;, we thus define:

1 1
Chist(h7 t) - 5 Cos(éh,t) + Ecrec(Yt—h; Y) (8)

where 65, = mod;(g(Yt—n-1) — &(Yt—n)) is the directed temporal difference of
the latent space projections g(-) of the historic observation y;_j; and its prede-
cessor y;_p—1 (taking the period 7 of the dimension into account). C;... again is
the self-reconstruction error described in (a).

For the compatibility of the whole history of y; of length H, we define:

H  _h
18 h)t
Chist(H7 t) _ Zh:l Y Ch t( ) (9)

H
Zh:1 ’Yh

where v € [0;1] is the discount factor for historic observations. As Ci.ec, Chist
can take values in [—1;+1] whereas —1 corresponds to maximally incompatible
and +1 to maximally compatible with the underlying UKR manifold.

The combination of (a) and (b) with A € [0;1] to an overall compatibility
measures yields:

C = ACyee + (1 — \)Chist € [—1;+1] (10)

Like this, C' gives a measure for the compatibility of the observation together
with its history with the underlying manifold. In other words, C' realises a mea-
sure to quantify the appropriateness of the candidate manifold to reproduce the
observation and the history. The classification of the observation to one of sev-
eral candidate classes then can be realised as a winner-takes-all mechanism that
works on the results of all UKR manifolds.

The special strength of this approach is that the compatibility with the repre-
sented motion is computed for each point separately (incorporating few historic
hand postures) and is thus independent of a fixed data window. In addition, this
enables the method to work on inhomogeneous data sequences which consist of
more than one movement and hence enables the use for a segmentation of such

Final version in: Proc. of the 32nd German Conference on Artificial Intelligence (KI-2009)



STEFFEN ET AL. A Manifold Repres. as Common Basis for Action Production and Recognition [PREPRINT] —p. 8

sequences into several candidate motions (each represented as Structured UKR
manifold) or even only motion parts.

9 Conclusion

In the field of humanoid robotics, two of the key challenges are the production
of naturally looking movements on the one hand and the recognition of observed
movements or their segmentation into several meaningful subparts on the other
hand. In this paper, we presented our idea of how these two problems can be
based on one and the same core representation — namely the Manipulation Man-
ifolds consisting of Structured UKR manifolds.

After a short revision of the basic method and the generation and use of the
manifolds for the action production part of the system, we presented our basic
plan to perform recognition and segmentation tasks on the basis of the same
representation. For this part, only initial evaluation has been done. Indeed, the
results are very promising and we are convinced that an elaborate evaluation
will help us to further refine our approach.
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