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Abstract— In dextrous manipulation, the implementation
of manipulation movements still is a complex and intricate
undertaking. Often, a lot of object physics and modelling
effort has to be incorporated into a controller working only
for a very restricted task specification and performing quite
artificially looking movements. In this paper, we present the
first steps towards a representation of manipulation movements
recorded from human demonstration which facilitates later
application and promotes natural motion. We use manifolds
of hand postures embedded in the finger joint angle space
which are constructed such that manipulation parameters
including the advance in time are represented by distinct
manifold dimensions. This allows for purposive navigation
within such manifolds. We present the manifold construction
using the Unsupervised Kernel Regression (UKR) and the way
of applying it for manipulation in the example of turning a
bottle cap in a physics-based simulation.

I. I NTRODUCTION

During the last decades, researchers and engineers have
made huge advances in constructing and building anthropo-
morphic robot hands which have become more and more
sophisticated as one can see for example in the Salisbury
Hand [9], the Utah/MIT Hand [6], the DLR II Hand [1]
and the Shadow Dextrous Hand [18]. Together with these
developments, researchers are facing the question of how
to dexterously control such complex robots with up to 20
degrees of freedom in up to five fingers and a wrist.

It quickly became clear that implementing fixed grasp and
manipulation programs does not lead to satisfying results
as it is very time consuming on the one hand and not
robust against or generalisable to differences in the grasp-
ing or manipulation situation. Thus, several sophisticated
approaches have been presented to realise more robustness
and generalisability. Michelman and Allen [11] implemented
simple object translations and rotations with the Utah/MIT
Hand and combined them to more complex tasks. In this
manner, they achieved to remove a child-proof bottle top
with two fingers exploiting a decomposition into subtasks
and explicit force and position control schemes. Zhang et al.
[20] define a graph of vertices representingcanonical grasps
consisting of topological hand/object feature pairs having
contact when the associated grasp is achieved. Directed
edges between two grasps represent possible transitions
which have to be designed as lower-level control laws.
Manipulation planning then is implemented as path planning
in the graph between defined start and end vertices. Fuentes
and Nelson [3] learn a mapping fromperceptual goals–
consisting of targeted object position/orientation and applied
finger forces – onto robot commands realising these goals

using an evolution strategy. Afterwards, manipulation can
be performed by defining the task-specific perceptual goal
and applying the learned mapping. Han et al. [4] propose a
purely contact wrench analysis approach. They use a planner
to generate a path in the space offeasible configurations of
the manipulation systemrespecting hand/object constraints.
A controller then incorporates sensor readings and system
kinematics and statics to properly actuate the planned path.
Platt et al. [13] address dextrous manipulation by sequencing
concurrent combinations of hierarchical organised closed-
loop controllers each derived from potential functions and
realising force-related objectives. By dint of operating subor-
dinated controllers in the nullspace of superiors, higher-level
conditions like wrench closure can be prioritised and thus
sustained.

To a certain extent, all these approaches require the
manual design of (lower-level) controllers from scratch. In
[15], Schaal argues that learning without incorporating prior
knowledge is a mostly artificial approach rarely taken by
humans and analyses the benefit of learning from demon-
stration. He applies reinforcement learning on balancing a
pole with an anthropomorphic robot arm to find an optimal
policy and solves the problem based on data from a 30
second demonstration. Nevertheless, he concludes from his
experiments that not every learning problem can profit from
prior knowledge in the same the way. Pollard and Hodgins
[14] presented a different approach to incorporating human
demonstration. They adapt quasistatic manipulation tasks
to new friction conditions and untrained objects of known
geometry by realising contacts and contact trajectories sim-
ilar to former demonstration. The manipulation is planned
such that the manipulator/object contacts combined with the
extreme ground friction cones always produce force closure
grasps arguing that intermediate configurations then are force
closure too.

Although these approaches all realise robust dextrous ma-
nipulations to a certain degree, their implementations require
considerable effort in problem modelling on the level of task
definition and object characteristics.

In this paper, we present the first steps towards a new
approach in dexterous manipulation with anthropomorphic
dextrous robot hands usingmanifolds of manipulation move-
ments. The main idea is to construct manifolds embedded in
the finger joint angle space which represent the subspace of
hand postures associated with a specific manipulation move-
ment. Instead of learning these representations in a purely
unsupervised manner yielding unpredictable manifolds, we
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want to construct them such that specific movement parame-
ters – and especially the advance in time – are explicitly
represented by specific and distinct manifold dimensions.
For our initial experiments, we focus on the manipulation
movement of turning a bottle cap incorporating the advance
in time and the cap radius as manipulation parameters. The
training data consist of a set of vectors of finger joint angles
generated in a physics-based simulation using a data glove
as input device.

The paper is organised as follows: In Section II, we
review the manifold representation that we chose for our
experiments, namely theUnsupervised Kernel Regression.
Section III will address the training data retrieval. In Section
IV we describe the construction of the manifolds including
results followed by an application example in Section VI.
Finally, we end up with a conclusion and an outlook on
future work in Section VII.

II. U NSUPERVISEDKERNEL REGRESSION

Unsupervised Kernel Regression(UKR) is a recent ap-
proach for learning continuous manifold representations. It
has been introduced as an unsupervised formulation of the
Nadaraya-Watson kernel regression estimator by Meinecke,
Klanke et al. in [10] and further developed by Klanke in [8],
[7]. It uses the Nadaraya-Watson estimator [12], [19] to find a
lower-dimensional (latent) representation of the original data
and a smooth mapping from that latent space back to the
original data space at the same time. The original Nadaraya-
Watson estimator defines a mapping

~y = f(~x) =
∑

i

~yi
K(~x− ~xi)∑
j K(~x− ~xj)

(1)

which realises a smooth, continuous generalisation of the
functional relationship between~x and~y described by given
data samples(~xi; ~yi). Here,K(·) is a density kernel. UKR
now treats Eq. (1) as a mapping from a lower dimensional
latent spaceX to the original data spaceY which is described
by a set of observed dataY = {~yi}. Here, the corresponding
X = {~xi} play the role oflatent parametersof the regression
function:

~y = f(~x;X) =
∑

i

~yi
K(~x− ~xi)∑
j K(~x− ~xj)

. (2)

The training of the UKR manifold thus can be realised by
gradient-based minimisation of the reconstruction error

R(X) =
1
N

∑
m

‖ ~ym − f(~xm;X) ‖2 . (3)

As special benefit, the UKR can very efficiently per-
form Leave-K-Out Cross-Validation by using a modified
f(~xm;X) in Eq. (3):

fm(~x;X) =
∑

i 6∈Nm

~yi
K(~x− ~xi)∑

j 6∈Nm
K(~x− ~xj)

(4)

whereNm is the set of neighbours excluded for the recon-
struction of~ym.

For further details, please refer to [10], [8], [7].

a) b) c)

Fig. 1. a) Hand-mounted CyberGlove II during cap turning movement.
b) Simulated hand model with bottle. The hand joints are controlled by
CyberGlove II. c) Close-up of the hand model.

III. D ATA RETRIEVAL

One bottleneck of manifold learning algorithms often is
the need of a rather high amount of training data which is
especially a problem when the generation of relevant data
can not be performed in a direct manner.

In the case of dextrous grasping and manipulation with
a robot hand, we are facing the problem that we need to
generate hand postures or even trajectories of hand postures
corresponding to a specific manipulation movement not
yet implemented by any algorithm. As per-joint control or
directly physically moving the fingers by hand does not yield
natural trajectories, it is a quite obvious approach to use our
own hands as perfect archetype to produce relevant data.

In general, there exist two ways to measure human hand
postures in form of vectors of finger joint angles. One method
is to use a vision system with integrated marker tracking.
Applying it to hand posture retrieval during manipulation
tasks, one has to cope with alternating marker occlusions due
to the finger movements. Using numerous cameras watching
the scene, occlusions can be minimised and precise joint
information can be recorded. Another way of retrieving hand
posture data is given by hand-mounted data gloves. In our
group, we utilise an Immersion CyberGlove II [5] (cf. Fig.
1a) with 22 bend sensors for the different joints. As the
sensors do not yield as precise data as possible with a
sophisticated vision system, we map the sensor values onto a
simulated hand model (Fig. 1b,c). The data generation itself
then takes place in a simulated manipulation scene (Fig.
1b) incorporating the joint angle corrections provided by the
collision detection module of the physics-based simulation
toolkit [2] and the more general hand posture corrections
performed by the user induced by visual feedback. The data
retrieval conducted in this way exploiting interactive user
control and dynamics and collision detection of the physics-
based simulation yield rather realistic training data.

By dint of this indirect method, we recorded sequences
of hand postures during cap turning movements for five
different cap radii (r = 1.5cm, 2.0cm, 2.5cm, 3.0cm
and 3.5cm). For each radius, we produced five sequences
each of about 30 to 45 hand postures. Each hand posture
consists of a vector of the 24 joint angles of the simulated
hand model which can be mapped onto our anthropomorphic
robotic Shadow Dextrous Hand[18].
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(a) Equidistant initialisation of the latent pa-
rameters (blue) respecting the order of the
hand posture samples in the movement trajec-
tory (red). The black circles in latent space
depict possible displacements of the latent
parameters due to the UKR optimisation.

(b) Procedure of incrementally adding new
sequences by projecting new samples into
the latent space of the previously trained
manifold. The new manifold consisting of the
combination of old and new data samples and
latent parameters gets retrained afterwards.

(c) Synchronising different radiirk and
r(k+1) by projecting new samples corre-
sponding to r(k+1) into the latent space
Xrk,. corresponding tork. The projections
then are used as initialisation ofXr(k+1),1

for the subsequent training ofMr(k+1),1.

Fig. 2. Schematic description of different steps in the manifold construction process.

IV. M ANIFOLD CONSTRUCTION

The problem using unsupervised manifold learning meth-
ods often is that there are usually only limited means
of incorporating partial task knowledge or of controlling
the way of how ”the manifold is laid into the underlying
data” respectively. On the other side, we can not provide
completely specified training data that enables us to per-
form a purely supervised approach. Thus, our goal was to
develop a mechanism that renders us possible to learn a
manifold representation of the data in a partly unsupervised
manner and additionally imprint specific meanings into the
directions within the manifold. In terms of our scenario, the
representation shall provide that every point on the manifold
corresponds to one moment in time of a motion trajectory
and additionally that the directions within the manifold, and
especially its single dimensions, inhere the meaning of one
specific motion parameter. Thus, in the example of turning
a bottle cap, the goal is to realise a manifold in which
one dimension controls the progress in time of the turning
movement and another dimension specifies the radius of the
cap. Then, performing the movement reduces to modifying
the time component of the latent parameter.

A simple but - as presented in the following - effective
approach to achieving this is to construct the final manifold
out of several sub-manifolds each realising a manipulation
movement of one motion parameter set.

In this first approach, we incorporate two parameters -
the progress in time of the movement and the radius of
the cap. The construction of the final manifold is performed
iteratively starting with training sequences corresponding to
the minimal cap radius successively increasing the radius of
the subsequent sequences.

For the first sequence of hand posturesY r1,1 = {~y r1,1
i }

corresponding to the minimal cap radiusr1 , we manually
distribute the latent parameters of a 1D-UKR manifold

equidistantly in a predefined interval of the latent space
according to the intra-sequence order of the hand postures
and perform the UKR training to optimise the latent param-
etersXr1,1 = {~x r1,1

i } afterwards (cf. Fig.2a). We denote
the resulting UKR manifold asMr1,1. The incorporation
of the second sequence (representing another example of a
movement for the same radius) is performed in an iterative
manner: the hand posture vectorsY r1,2 of this sequence are
projected pointwise into the latent space of the previously
trained 1D-manifoldMr1,1 resulting inXr1,2 (cf. Fig.2b).
By dint of this projection, we approximate a synchronisation
of the temporal advance of the two movements. In the
next step, we combine those data to a new UKR manifold
Mr1,{1,2} with observed dataY r1,{1,2} = Y r1,1∪Y r1,2 and
latent parametersXr1,{1,2} = Xr1,1 ∪Xr1,2. A subsequent
UKR training ofMr1,{1,2} optimises the latent parameters
subject to the whole combined data set.

By performing this procedure for all sequences of hand
postures corresponding to similar cap turning movements for
one specific cap radius, a 1D–UKR is trained representing a
generalised radius-specific movement. Thus, by applying this
method to all sets of radius-specific sequences, we generate
one 1D–UKR per radius. To promote the synchronisation
of the temporal advances also between the different radius-
specific manifolds, we only initialise the first manifoldMr1,1

with equidistant latent parameters as describes above. When
proceeding with sequencesY r(k+1),1 of a new radiusr(k+1),
we project the sequence onto the previously trained man-
ifold Mrk,{1,..,n} (as with sequences for the same radius)
and utilise the resulting latent parameters as initialisation
Xr(k+1),1 of the new manifoldMr(k+1),1 instead of com-
bining them to a manifoldMrk,{1,..,n+1} (cf. Fig.2c). The
training then continues as described above. Notice that the
first sequence used to initially train the manifold for the
first radius plays a special role and determines the relevant
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subspace in the hand posture space. Therefore, it is important
that this sequence represents a complete movement rather
than only a specific phase.

The subsequent combination of all 1D-manifoldsMri,· to
one 2D-manifoldM representing the complete cap turning
movements for all radiiri covered by the training data then
is performed manually and without the usage of the UKR
training. M then consists of all incorporated training data
{Y ri,j}i,j together with the corresponding latent parameters
{Xri,j}i,j and represents the whole manipulation movement
described by the training data. Therefore, we denote it as
Manipulation Manifold. The extension to two dimensions is
realised by expanding each latent parameter~xi by a second
dimension denoting the appropriate radius corresponding to
the associated training sequence.

V. CONSTRUCTION RESULTS

We applied the method described in Section IV to all
recorded training sequences (cf. Section III) starting with
the set of sequences corresponding to the minimal radius
r1 = 1.5cm and successively incorporating sequences of
greater radii. After having trained one 1D-manifold for each
of the training radiir = 1.5cm, 2.0cm, 2.5cm, 3.0cm
and3.5cm in the described synchronised manner, we added
the corresponding radius values as second dimension to
the latent parameters (by manually extending each latent
parameter by an extra dimension). The distribution of the
latent parameters in the new latent space is depicted in Fig.
3. As constructed, the horizontal (first) dimension represents
the temporal advance within the cap turning movement and
the vertical (second) dimension denotes the associated cap
radius. As no further UKR training is performed, the latent
parameters only lie on the previously set discrete radius
values. To get a more distinct impression of the movements
represented by the manifold and its generalisation abilities,
Fig. 4 depicts a matrix of hand postures corresponding to
the positions in a regular grid covering the latent space of
the manifold. Again, the temporal advance is depicted in the
horizontal and the different radii in the vertical direction.
To facilitate the comparison, a bottle cap with radius(r =
1.5cm) is depicted in each sub-figure. As shown in Fig.
3, only the radiir = 1.5cm, 2.0cm, 2.5cm, 3.0cm and
3.5cm are directly supported by training data. Thus, the
depicted intermediate radiir = 1.75cm, 2.25cm, 2.75cm
and 3.25cm in Fig. 4 visualise the generalisation ability of
the constructed manifold to new cap radii. The corresponding
movements for the intermediate radii are clearly similar
to the training sequences. Secondly, it illustrates the effect
of the temporal synchronisation between the different 1D-
manifolds by projecting new sequences into the latent space
of the previously trained manifolds before newly training
as described in Section IV. The most distinct picture of
this synchronisation can be seen in columns3 − 5 (t =
20% − 40%) where the fingers are shown in the moments
(virtually) contacting the cap. Additionally, those columns
give an impression of the smoothness in the2nd manifold
dimension. Remark the smooth finger opening with increas-
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Fig. 3. Distribution of the latent parameters ofM. The 1st dimension
represents the advance within the movement. As constructed, the2nd
dimension represents the defined cap radii.

ing cap radius in the column direction. In the row direction,
all rows depict smooth transitions from left to right indicating
a smooth manifold also in the row direction.

One effect of the presented training method is not directly
obvious in Fig. 4. When reaching the manifold border in the
temporal dimension while performing the turning movement,
the temporal position has to be reset to the beginning (go
back from 100% to 0%) to restart the turning movement. As
by now, there is no regulation for border synchronisation
incorporated in the training, the 100%- and 0%-postures
usually significantly differ from each other yielding an abrupt
non-smooth hand movement when jumping back to the 0%-
posture. As the beginning and the end of the movement are
the phases where the fingers are the farthest away from the
cap, the motion artifact resulting from the missing border
synchronisation does not effect the cap turning and thus
is not of particular relevance for the success of the cap
turning manipulation. Nevertheless, we will address this issue
in future work to optimise the natural impression of the
manipulation.

VI. A PPLICATION

The basic idea of the manifold construction in the way we
presented it in the preceding sections was to create a robust
representation of manipulation movements that facilitates to
perform the associated manipulation in later applications.
Thus, only simple steps need to be taken to reproduce the
trained movement in absence of a cap and only few more
steps to really perform the associated manipulation of a cap.

To reproduce the movement, we just have to manually
select a desired cap radius (in the presented way of construct-
ing the manifold, the values of the second manifold dimen-
sion correspond to cap radii in centimetres) and navigating
through the manifold by increasing the temporal dimension
value while keeping the radius value fixed. When reaching
the manifold border, we reset the temporal dimension value
to 0% and continue.

Performing a manipulation can be achieved in a similar
manner. Instead of manually selecting a cap radius, we need
to recognise the real radius of the presented bottle. In order to
achieve this, we grasp the bottle cap by performing our previ-
ously developedExperience-based Graspingalgorithm [17],
[16] using ourManipulation Manifoldfrom Section V which
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Fig. 4. Generalisation results of the UKR training/construction. The depicted hand postures correspond to the positions of a regular grid covering the
latent space of the manifold. The horizontal direction is associated with the1st (temporal) latent dimension and the vertical direction with the2nd (radius)
latent dimension. The size of the depicted bottle cap in all pictures is the same (r = 1.5) as a comparison aid. The radiir = 1.5, 2.0, 2.5, 3.0 and
3.5 correspond to radii covered by the training data, the radiir = 1.75, 2.25, 2.75 and3.25 demonstrate the generalisation capability of the approach.
The most distinct picture of the differences between the radii can be seen in the columnst = 20% . . . 60% where the fingertips are closest to the cap.
A more sophisticated impression of the smoothness of the movement and the manifold respectively can be received by means of a movie available under
http://www.techfak.uni-bielefeld.de/˜jsteffen/mov/SteffenHaschkeRitter_TurnCap_IROS2008.avi .

– metaphorically speaking – pulls the current hand posture
onto the manifold. As this approach originally has been
designed to work withGrasp Manifoldsconsisting of hand
postures all representing grasps, the originally presented
algorithm does not fit optimally toManipulation Manifolds
but works sufficiently good for our first experiments. For
future work, an adaptation to the new context will be realised.
Already, the grasping algorithm results in an adequate grasp
posture which can be projected into the latent space of the
manipulation manifold. This yields a latent position which
defines the radius to be used during the subsequent manipu-
lation together with the current temporal position within the
movement. Again, by increasing the temporal value while
keeping the radius fixed, the manipulation movement is
performed. By dint of the previous projection of an actuated
grasp posture, the movement is adjusted to the presented cap
radius and thus fits to the current manipulation context. By

now, no further explicit contact conditions are incorporated.
Figure 5 depicts two sequences of intermediate hand postures
during a bottle cap manipulation for two different radii (a)
r = 2cm and (b)r = 2.75cm using our algorithm. The first
rows each depict one whole movement cycle (0% − 100%)
whereas the second rows each show in detail the period of
object manipulation in which the fingers have contacts to
the bottle cap. Both manipulations are successful in terms of
rotating the cap but as depicted in the second rows of Fig.
5a) and b), the period of the very manipulation where the
cap is actively rotated is much longer forr = 2cm (notice
the different time scales in both rows!). In the first case, the
manipulation takes place between14% and34% with at least
two opposing contact fingers up to42% where at least one
finger contact remains. In the second case, this period only
lasts from36% to 46% with opposing contact fingers up to
50% with one finger contact.
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a) cap radiusr = 2cm
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

6% 10% 14% 18% 22% 26% 30% 34% 38% 42% 46%

b) cap radiusr = 2.75cm
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

32% 34% 36% 38% 40% 42% 44% 46% 48% 50% 52%

Fig. 5. Application results: hand posture sequences generated by applying the presentedManipulation Manifolds. Beforehand, the unmodifiedExperience-
based Grasp Controlalgorithm [16] has been applied to find an initial grasp posture. The sequences depict intermediate hand postures during the turning
movement for radii a)r = 2cm and b)r = 2.75cm. In each case, the first rows visualise one complete movement cycle (0% − 100%) whereas the
second rows each focus on the contact period. The green cones at the fingertips visualise the contact friction cones. Notice the different time scales in the
second rows expressing different contact time proportions within the movements for the different manipulations.

VII. C ONCLUSION AND FUTURE WORK

We presented the first steps towards a new approach in
dextrous manipulation that uses sequences of hand postures
recorded from human demonstration to learn and construct
Manipulation Manifoldsin which distinct dimensions rep-
resent distinct parameters of the associated manipulation.
With the example of turning a bottle cap, we provided a
proof of concept by incorporating two parameters – the cap
radius and the temporal advance within the movement – in a
manifold and applying it to perform the cap turning to two
different bottle caps in an application. From our experiments,
we conclude several subjects and aims for our future work.
The most important for us will be to change the learning
and construction mechanism such that it works in a more
unsupervised fashion with the goal of completely replacing
the manual construction part by an unsupervised learning.
For this, we have several ideas in mind of how to modify the
UKR learning to better fit to the problem of chronologically
ordered data sequences. Other important objectives are to ex-
plicitly incorporate contact conditions and to remove artifacts
due to the missing border synchronisation. While following
our goals, we want to sustain our main principle of this work
of constructing manifolds in which distinct dimensions have
imprinted distinct and specific meanings like the radius of a
bottle cap and the temporal advance within the manipulation
movement.
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