
Recognition of Manual Actions Using Vector
Quantization and Dynamic Time Warping

Marcel Martin1, Jonathan Maycock2,
Florian Paul Schmidt2, and Oliver Kramer3

1 Bioinformatics for High-Throughput Technologies, Computer Science 11,
TU Dortmund, Germany

2 Neuroinformatics Group, Cognitive Interaction Technology Center of Excellence,
Bielefeld University, Germany

3 Algorithms Group, International Computer Science Institute, Berkeley, CA, USA

Abstract. The recognition of manual actions, i.e., hand movements,
hand postures and gestures, plays an important role in human-computer
interaction, while belonging to a category of particularly difficult tasks.
Using a Vicon system to capture 3D spatial data, we investigate the
recognition of manual actions in tasks such as pouring a cup of milk
and writing into a book. We propose recognizing sequences in multi-
dimensional time-series by first learning a smooth quantization of the
data, and then using a variant of dynamic time warping to recognize
short sequences of prototypical motions in a long unknown sequence.
An experimental analysis validates our approach. Short manual actions
are successfully recognized and the approach is shown to be spatially
invariant. We also show that the approach speeds up processing while
not decreasing recognition performance.

1 Introduction

Manual intelligence plays an important role in human-computer interaction and
robotics, see Ritter et al. [12]. Hands are the most important manipulators in a
human’s interaction with the environment. Therefore, the precise recognition of
manual actions will be an essential part of human-computer interaction. Data
can be captured from multiple sources, e.g., acceleration sensors, cameras, gloves
or, as in our scenario, a visual marker system. A quantization of the high-
dimensional sequences simplifies the analysis. In the following, we introduce a
hybrid approach based on vector quantization (VQ) and dynamic time warping
(DTW) [15]. In Section 2, we summarize related work in the fields of DTW
and recognition of manual actions. In Section 3, we introduce our manual action
recognition system. In Section 4, we present experimental results from a scenario
of daily manual actions such as picking up a book or pouring milk into a cup. We
concentrate on the selection of the most relevant features and on a comparison
of runtimes of different algorithms for the VQ step.



2 Related Work

Gesture recognition is often done in two steps. In the segmentation step, candi-
dates for gestures are identified. Keogh et al. [7] propose a theoretical segmen-
tation framework that can be applied. Non-gestures may be recognized with the
approach by Lee et al. [9]. In the second step, identified segments are classified.
Ekvall and Kragic [4] use Hidden Markov Models to model the hand posture
sequence during a grasping task. They improve the recognition rate of their sys-
tem by using data from the entire sequence, not only the final grasp. Caridakis
et al. [2] introduced an approach for the recognition of gestures based on hand
trajectories. Visual data is recorded with a camera and translated by a real-time
image processing module while a self-organizing map (SOM) [8] discretizes the
spatial information, and a Markov approach models the temporal information.
The approach is not location invariant. Gavrila et al. [5] consider the recognition
of human movements as a classification problem involving the matching of a test
sequence with several reference sequences representing prototypical activities.
The data is captured using a moving light display system. After extracting joint
angles as features, they use DTW to match the movement patterns. Stiefmeier
et al. [14] have proposed a method for online and real-time spotting and classifi-
cation of gestures in a wearable and ubiquitous computing scenario with body-
worn sensors. Continuous motions are aggregated to trajectory segments and
transformed into direction vectors. Equidistantly distributed codebook vectors
quantize the features and dynamic programming is used for sequence matching.
Recently, Chang et al. [3] explored how to methodically select a minimal set of
hand posture features from optical marker data for grasp recognition. Starting
with 31 markers, they used supervised feature selection to reduce the feature
set of surface marker locations on the hand for grasp classification of individual
hand postures. They found that a reduced feature set of only five markers was
able to retain at least 92% of the accuracy of classifiers trained on the full set of
markers. However, in contrast to the work presented here, they only considered
the classification of a hand posture at a single point in time.

3 Gesture Recognition System

After raw Vicon data has been recorded, we recognize manual actions in three
steps. First, motion features are computed and normalized. Second, the high-
dimensional features are mapped onto symbols using VQ. Third, the sequence
of symbols, which can be seen as a string, is analyzed with DTW.

3.1 Vicon

Vicon is a digital optical motion capture system that allows high-precision 3D
object tracking [1]. Our setup is a purposefully built cage (length 2.1 m, width
1.3 m, height 2.1 m) that has 14 MX3+ cameras capturing at 200 frames per
second. The table on which the experiment was carried out has a height of



1.0 m. Reflective markers were placed near the tips of each of the fingers, on
each of the knuckles, and on the back of the hand (Fig. 1).

3.2 Feature Computation and Preprocessing

Vicon delivers a stream of 33-dimensional vectors x1 to xn consisting of 3D
positional data for the 11 markers on the hand. As preprocessing step, we reduce
the sampling rate from 200 Hz to 20 Hz by averaging over ten adjacent samples to
produce one new sample. This does not degrade performance later, but reduces
computation time, which is quadratic in the length of the sequences.

We require that a gesture made twice in different locations or facing differ-
ent directions is considered the same (spatial invariance and invariance under
rotations around the (upwards pointing) z axis). Euclidean coordinates are un-
suitable, but the following features fulfill the requirement: F1: The angle between
the x-y-plane and the axis going through the index finger knuckle and baby finger
knuckle markers (inclination of the hand); F2: the distance between the thumb
tip and the index finger tip markers. The following two features are computed
for either all markers or just the five fingertip markers: F3: The magnitudes of
the velocities; F4: the angles between successive velocity vectors. We also cal-
culate the barycenter of all markers or the fingertip markers only and derive
the following features: F5: The velocity of the z coordinate of the barycenter;
F6: the average distance of the five finger tip markers to the barycenter; F7: the
magnitude of the velocity of the barycenter; F8: the magnitude of the velocity
of the barycenter projected onto the x-y-plane (“ground speed”); F9: the angle
between successive barycenter velocity vectors.

After feature extraction, the features need to be normalized. We tested two
methods: Variance normalization ensures that the mean of each dimension is
zero and the variance is one. Range normalization modifies each dimension such
that the minimum is zero and the maximum is one.

3.3 Feature Quantization

After feature extraction and normalization, the next step is the quantization of
the high-dimensional feature vectors. In this paper, VQ is the process of mapping

Fig. 1. Example of manual action scenario: a carton of milk is grasped, picked up, and
milk is poured into a cup; lower figures show the corresponding visualization of the
markers in Nexus [1], a software program from Vicon.



feature vectors to a set of representational codebook vectors c1, . . . , cK . The
codebook vectors are distributed in feature space in a training step by one of the
techniques described below. After training, new feature sequences are quantized
by computing the closest codebook vector for each feature vector. This can be
interpreted as translating the high-dimensional sequences of feature vectors into
strings over the finite alphabet of codebook vectors. Quantization is an essential
part of our approach since it allows for faster computation in the following
matching procedure. We also assume that a VQ algorithm allows for a smoother
quantization than dividing the feature space into grids or distributing codebook
vectors equidistantly. Instead, VQ algorithms adapt to the data and therefore
capture the intrinsic structure of the data.

We make use of three approximation techniques to distribute the codebook
vectors in feature space. K-means clustering [10] minimizes the distances between
K codebook vectors and all samples in training set T by iteratively repeating
two steps. The first step assigns each data sample xi to the closest codebook
vector cj , and the next step computes a new codebook vector as the average of
all assigned data samples. Similarly, SOMs [8] distribute K neurons in the data
space. Here, codebook vectors cj are neural weight vectors wi. In the training
phase, for each data sample xi, the closest neural weight vector wj is computed
and its weights as well as the weights wk of the neighbor neurons are pulled into
the direction of xi by w′k = wk +η ·h(wj ,wk) · (x−wk), where η is the learning
rate and h is the neighborhood function that defines the distance to the weight
vector wj of the winner neuron on the map of neurons. This map is an artificial
topology of neurons, typically arranged as a chain or on a grid. The growing
neural gas (GNG) by Martinetz [11] is closely related to the SOM, but defines
the neighborhood h(·) in data space.

Our program is written in Python using the GNG implementation given in
the Modular toolkit for Data Processing (MDP) v2.5 [16], a K-means imple-
mentation given in SciPy [6] (module scipy.cluster.vq), and our own SOM
implementation.

3.4 Dynamic Time Warping

DTW can be used to compute a distance between two sequences s and t of
length n and m that are mostly the same but differ by local time distortions.
DTW was initially developed for the task of speech recognition, but has since
been applied to many domains in which multidimensional linear sequences are
observed. The problem is to find a correspondence of each sequence element si of
s to an element tj of t and vice versa such that the (weighted) sum of distances
between corresponding elements is minimized. This sum is the DTW distance.
Since the sequences represent time series data, the correspondences must be
monotonic. For example, when si corresponds to tj , then si+1 must correspond
to a tj′ where j′ ≥ j.

We first define a distance d(i, j) between single sequence elements: For K-
means and the GNG, d(i, j) is the Euclidean distance between the codebook
vectors assigned to si and sj . For the SOM, d(i, j) is the distance on the SOM



grid between the two neurons assigned to si and sj . Without VQ, let d(i, j) :=
‖tj − si‖.

One advantage of using VQ is that we can pre-compute all values of d(i, j),
which gives a large speed-up in the following algorithm.

To solve the DTW problem, we use this recursion algorithm by Sakoe and
Chiba [13]:

g(i, j) = min

g(i− 1, j − 2) + 2d(i, j − 1) + d(i, j),
g(i− 1, j − 1) + 2d(i, j),
g(i− 2, j − 1) + 2d(i− 1, j) + d(i, j)

 ,
i = 1, . . . , n,
j = 1, . . . ,m (1)

where d(i, j) is a distance between si and tj and g(i, j) is the non-normalized
DTW distance between the sequence prefixes s1,...,i and t1,...,j . We let g(i, j) =∞
when i < 1 or j < 1. g(i, j) can be computed with dynamic programming.

The initial condition in Sakoe and Chiba’s paper is g(1, 1) = 2d(i, j), and
their normalized DTW distance is DTW (s, t) = g(n,m)

n+m . The sequences are there-
fore compared from end to end. To allow that s may start anywhere within t,
we change the initial condition to g(1, j) = 2d(1, j)∀j = 1, . . . ,m. To allow
s to end anywhere, the new DTW distance is DTW ′(s, t) = g(n,m′)

n+m′ , where
m′ = argminj=1,...,m g(n, j). m′ is the position at which s ends within t. To
find out the start position, we introduce table h. If h(i, j) = k, the optimal
path through (i, j) starts at position k in sequence t. The initial conditions are
h(1, j) = j∀j = 1, . . . ,m. h(i, j) is either h(i − 1, j − 2), h(i − 1, j − 1), or
h(i− 2, j − 1), depending on which term in (1) is minimal.

4 Experimental Analysis

We now present an experimental evaluation of our approach. We recorded every-
day actions similar to the scenario depicted in Fig. 1, which were carried out on
four objects (cup, milk carton, pen and book). These recordings serve as refer-
ence manual actions and constitute the training data. The actions are: 1) Open
book, 2) Pick up pen, 3) Write in the book, 4) Put down the pen, 5) Close book,
6) Pick up milk carton, 7) Simulate pouring milk into cup, 8) Put milk back in
original position, 9) Pick up cup and bring to mouth to simulate drinking, 10)
Put cup back in original position, and 11) Bring hand back to original position.
We then recorded seven long sequences of manual actions that, among other un-
known motions, contain variations of the reference actions. The sequences vary
in order and orientation to allow an analysis of spatio-temporal dependencies
of our technique. For clarity, we illustrate two of the seven sequences: Seq. 1
consists of all the above steps in the order given. In Seq. 5, all four objects
were rotated about the z-axis and the cup and the milk carton positions were
swapped. The sequence of actions then matched Seq. 1 except that actions 9)
and 10) were not carried out. We recorded each sequence three times for a total
of 21 sequences. The first seven sequences comprise the validation data and the
14 remaining sequences comprise the test data. The sequences of the validation



data contain 66 known manual actions in total. Those of the test data contain
132 known actions.

For all three quantization algorithms, we chose parameters in the following
way to limit the codebook size to 100 vectors, which we found to yield a reason-
able quantization: For GNG training, we set the maximum number of codebook
vectors to 100. We observed that around 70 were used. For K-means clustering,
the number of cluster centers was also set to 100. 64 clusters were found to be
nonempty. In case of the SOM, we used a 2-dimensional 10× 10 grid.

In this paper, we assume that we know which actions occur in each trial
and that each action occurs at most once. This is not an inherent limitation
of our approach since preliminary experiments suggest that a properly chosen
DTW distance threshold to decide if the action occurs can make the approach
fully usable in practice, which will be subject of future work. To measure how
well our program finds a gesture, we use the following score function. Let the
interval (bp, ep) be the predicted location of the found action and let (bt, et) be
the true location of the action. We define the (relative) overlap o(bt, et, bp, ep) :=
max{min{ep,et}−max{bp,bt},0}

max{bp−ep,bt−et} . The overlap is 100% when both intervals are the
same and decreases as they move apart. It is zero when the intervals are disjoint.

Evaluation Algorithm. A single run of the program consists of the following
steps. 1) Load the reference motions; 2) Compute normalized features and train
a VQ algorithm; 3) Load either validation or test data and compute normalized
features; 4) Convert references and action sequences to symbol sequences using
the trained VQ algorithm; 5) For each manual action sequence, search for each
known action and record the overlap o; 6) Report the average overlap ô and how
often o was at least 50%, 75%, and 90%.

4.1 Feature Selection

To find the best feature sets, we ran the program on the validation data using
all 29− 1 possible nonempty feature sets, but without VQ. For each set, we test
variance and range normalization and compute features F3–F9 from either all
or only the fingertip markers (a total of 4 · (29 − 1) runs). We then looked at
the feature sets with the best average overlap ô (Tab. 4). All of them contain
F1 and F2. F3 was never used and F4 only once. F5–F9 seem to overlap in the
sense that at least one of them can be dropped without detriment.

For the following experiments, we pick the following feature sets (underlined
in Tab. 4). Feature set A is the best in Tab. 4: variance normalization, fingertip
markers only, features F1, F2, F5, F6, F8, and F9. Feature set B is at position 5
in Tab. 4 in terms of overlap, but it achieved the highest number of overlaps of at
least 90% and contains only four features: variance normalization, all markers,
features F1, F2, F8, and F9. Feature set C is at position 15, but also reached a
high number of overlaps of at least 90% with only four features: range normal-
ization, all markers, features F1, F2, F6, and F9.



Table 1. Best feature sets among all 2044 possible nonempty feature
set/normalization/marker combinations, without VQ. V: Variance normalization; R:
Range normalization; T: fingertip markers; A: all markers. The nx rows indicate how
often ô was at least x% (within 66 actions).

ô [%]
79

.6
6
78

.3
78

.0
7

77
.9
3

77
.7
9

77
.7
3

77
.6
8

77
.6
4

77
.6
1

77
.5
8

77
.4
8

77
.4
1

77
.3
9

77
.3
4
77

.3
77

.1
6
77

.1
77

.0
8

76
.9
8

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

norm. V V V V V V V R V R V V R R R V R V R
markers T T A A A A A A T T A A A T A A A A A
F1 × × × × × × × × × × × × × × × × × × ×
F2 × × × × × × × × × × × × × × × × × × ×
F3
F4 ×
F5 × × × × × × × × × ×
F6 × × × × × × × × × × × × × × ×
F7 × × × × × × × × × × × ×
F8 × × × × × × × × × × × × × ×
F9 × × × × × × × × × × × × × × ×
n90 14 13 12 14 19 12 10 14 16 12 13 13 17 15 21 18 16 8 12
n75 46 44 42 43 43 44 43 42 44 44 43 44 41 44 44 42 42 45 40
n50 65 64 65 64 64 64 64 65 63 63 64 64 65 63 60 64 61 62 64

4.2 Comparison of Vector Quantization Approaches

Using the three chosen feature sets, we ran the evaluation program on the test
data set with enabled VQ to compare the approaches in terms of runtime and
recognition accuracy (Tab. 4.2).

Table 2. Comparison of K-means, SOM, and GNG recognition accuracy, overall run-
time and time spent for DTW, using three feature sets with high recognition rate.
Evaluation was done on the test data set. time is total runtime in seconds. DTW is
the runtime only for the DTW step in seconds.

Feat. No VQ GNG SOM K-means
set ô [%] time DTW ô [%] time DTW ô [%] time DTW ô [%] time DTW

A 70.35 148.2 133.2 68.94 43.6 17.5 72.23 231.0 16.3 70.45 41.0 25.1
B 69.45 151.6 131.8 66.76 46.5 17.0 60.02 220.3 16.7 66.46 48.0 26.1
C 64.02 167.5 147.6 63.99 44.1 16.4 62.09 242.7 16.4 63.27 46.7 26.5

The recognition accuracies are almost the same for no VQ, the GNG, and K-
means. Only the SOM shows slightly worse recognition results for feature sets B
and C. We observe significant savings in terms of DTW runtime when the VQ
methods are used. The overall runtime is reduced by more than two thirds in
the cases of GNG and K-means. In case of the SOM, the increased total runtime
is due to a long training time because of the non-optimized implementation.



5 Summary and Outlook

Our experimental analysis reveals that our approach can recognize the manual
actions of a small set of everyday actions, while a VQ preprocessing step can lead
to significant savings in runtimes. We will extend the approach in various ways.
To analyze inter-subject differences, we will enrich the experimental data and
record manual actions using different subjects. A further task is to find reliable
indicators to decide whether a certain gesture we are looking for occurs at all (in
any form). Furthermore, we will extend the framework to a general framework
for the recognition of manual action sequences and related multidimensional
dynamic data that allows the integration of various preprocessing steps, vector
quantization and string matching algorithms.

References

1. Vicon motion capture system. http://www.vicon.com/.
2. G. Caridakis, K. Karpouzis, A. Drosopoulos, and S. Kollias. SOMM: Self organizing

Markov map for gesture recognition. Pattern Recogn. Lett., 31(1):52–59, 2009.
3. L. Y. Chang, N. S. Pollard, T. M. Mitchell, and E. P. Xing. Feature selection for

grasp recognition from optical markers. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 2944–2950, 2007.

4. S. Ekvall and D. Kragic. Grasp recognition for programming by demonstration.
In Proc. IEEE Int. Conf. Robotics and Automation, pages 748–753, 2005.

5. D. M. Gavrila and L. S. Davis. 3-D model-based tracking and recognition of
human movement. In Proc. Int. Work. on Face and Gesture Recognition, Zurich,
Switzerland, 1995.

6. E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open Source scientific tools for
Python, 2001–2010.

7. E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online algorithm for seg-
menting time series. In Proc. of the 2001 IEEE Int. Conf. on Data Mining, pages
289–296, 2001.

8. T. Kohonen. The self-organizing map. Proc. IEEE, 78(9):1464–1480, Sept. 1990.
9. H.-K. Lee and J. H. Kim. An HMM-based threshold model approach for gesture

recognition. IEEE Trans. Pattern Anal. Mach. Intell., 21:961–973, 1999.
10. S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theor.,

28(2):129–137, Mar. 1982.
11. T. Martinetz and K. Schulten. A “neural-gas” network learns topologies. Artificial

Neural Networks, pages 397–402, 1991.
12. H. Ritter, H. Robert, F. Röthling, and J. J. Steil. Manual intelligence as a Rosetta

Stone for robot cognition. ISRR, Dec. 2007.
13. H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken

word recognition. IEEE Trans. Acoust. Speech Signal Process., 26:43–49, 1978.
14. T. Stiefmeier and D. Roggen. Gestures are strings: Efficient online gesture spotting

and classification using string matching. In Proc. of 2nd Int. Conf. on Body Area
Networks (BodyNets), 2007.

15. A. Wendemuth. Grundlagen der stochastischen Sprachverarbeitung. Oldenbourg,
2004.

16. T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for Data Processing
(MDP): a Python data processing frame work. Frontiers in Neuroinformatics, 2:8,
2008.


