
Backpropagation-Decorrelation: online recurrent
learning with O(N) complexity

Jochen J. Steil

Neuroinformatics Group, Faculty of Technology
University of Bielefeld, Germany

jsteil@techfak.uni-bielefeld.de, www.jochen-steil.de

Abstract— We introduce a new learning rule for fully recurrent
neural networks which we call Backpropagation-Decorrelation
rule (BPDC). It combines important principles: one-step back-
propagation of errors and the usage of temporal memory in
the network dynamics by means of decorrelation of activations.
The BPDC rule is derived and theoretically justified from
regarding learning as a constraint optimization problem and
applies uniformly in discrete and continuous time. It is very easy
to implement, and has a minimal complexity of 2N multiplications
per time-step in the single output case. Nevertheless we obtain fast
tracking and excellent performance in some benchmark problems
including the Mackey-Glass time-series.

I. INTRODUCTION

In recent years, recurrent neural networks have become a
fundamental tool for trajectory learning, in time-series pre-
diction and generation, speech recognition, adaptive control,
or biological modeling. Despite encouraging practical success,
one of the main drawbacks for their application is the known
high complexity of training algorithms. Thus reduction of
training complexity has always been one of the main issues
in recurrent learning research (see for a review [1]). In the
field of gradient based algorithms, some milestones were the
reduction of the O(N4) real-time recurrent learning [2] to
O(N3) in [3], and the introduction of backpropagation through
time (BPTT) in its online version [4], which has O(N 2) but is
storage demanding. There is ongoing research to devise other
efficient recurrent learning schemes, in particular employing
regularization techniques and partially recurrent networks (see
the recent review in [5]). But most of the efficient existing
algorithms are quite complex and in particular the online
techniques typically need proper adjustment of learning rates
and time-constants. A technique as simple and easy to use
as standard backpropagation for feedforward networks, which
could attract a wider audience to the usage of recurrent
networks, is still lacking.

Recently two fruitful new ideas have appeared. In [6], Atiya
and Parlos have derived a new O(N 2)-efficient algorithm,
which is based on the idea to differentiate the error function
with respect to the states in order to obtain a “virtual teacher”
target, with respect to which the weight changes are computed.
It has been claimed that this new technique outperforms the
BPTT approach significantly [6]. We refer to this approach,
which can be applied in continuous and discrete time and for
different formulations of the recurrent dynamics, as APRL

(Atiya-Parlos recurrent learning). A second, seemingly very
different source of ideas has been developed in [7] under the
notion “echo state network” and [8] as “liquid state machine”.
Both approaches use recurrent networks as a kind of dynamic
reservoir, which stores information about the temporal behav-
ior of the inputs and allows to learn a linear readout function.
There is, however, an interesting connection between these
ideas: for the – most common and most important – case of a
single output neuron it was shown in [9] that APRL also leads
to a functional decomposition of the trained networks into a
fast adapting readout layer and a slowly changing dynamic
reservoir. In the reservoir weight changes are highly coupled,
such that the network develops with much less independent
degrees of freedom than usual.

In this contribution, we devise a new and very simple
learning rule which combines these two aforementioned ideas
with the attempt to optimize information processing by means
of decorrelation. While decorrelation learning rules are well
known for sparse coding and blind source separation [10], [11]
and have also been proposed in biological modeling [12], the
combination of decorrelation with backpropagtion of teacher
induced errors is not common for recurrent trajectory learning.
Our new learning rule uses three important principles: (i)
one-step back propagation of errors by means of the virtual
teacher forcing like in APRL, (ii) the usage of the temporal
memory in the network dynamics which is adapted based on
decorrelation of the activations, and (iii) the employment of a
non-adaptive reservoir of inner neurons to reduce complexity.
The output weights then implement an linear readout function
while, however, still give full feedback into the reservoir.
We therefore call the new learning scheme backpropagation-
decorrelation rule (BPDC).

The third principle implies that the BPDC-rule is applied
only to the output weights, such that we obtain a recurrent
online-learning scheme with linear complexity 2N . It applies
uniformly in discrete and continuous time, is simple to imple-
ment, and proves to be very robust against parameter variations
in simulations. The error measures obtained are excellent and
are comparable to the online version of APRL as is shown
by simulations of some benchmark problems including the
Mackey-Glass time-series.

In Section 2, we introduce the learning rule, in Section 3
we show that it can be developed and theoretically justified

feedbackinput

trainable weights

output

fixed
dynamic reservoir

Fig. 1. The BackPropagation-DeCorrelation (BPDC) rule adapts only the
output weights of a fully connected recurrent network with non-adaptive
internal reservoir. It aims at temporal decorrelation of the network activations
with respect to the inputs and one-step backpropagated errors, such that the
output neuron can optimally read out from the dynamical memory.

starting from the virtual teacher forcing approach of APRL
learning, which it approximates in some loose sense. In
Section 4, we give simulation results for some benchmark
problems and discuss the results in the final Section 5.

II. BACKPROPAGATION-DECORRELATION LEARNING

We consider fully connected recurrent networks

x(k+1) = (1−∆t)x(k) + ∆tWf(x(k)), (1)

where xi, i=1, . . . , N are the states, W ∈R
N×N is the weight

matrix, and k = k̂∆t, k̂ ∈ N+ is a discretized time variable
such that for small ∆t we obtain an approximation of the
continuous time dynamics dx/dt = −x + Wf(x) and for
∆t = 1 the standard discrete dynamics. We assume that f
is a standard sigmoid differentiable function and is applied
component wise to the vector x (or xT). For simplicity we treat
inputs us(k), s = 1, ..., Ni by lumping them to certain states
xr such that xr(k) = us(k) for all times k and we assume that
the inputs are scaled to a reasonable region, such that the mean
is approximately zero. We further assume that W is initialized
with small random values. Denote by O ⊂ {1, .., N} the set
of indices j of No output neurons i.e. xj output ⇒ j∈O and
let for a single output neuron w.r. O={1} such that x1 is the
respective output as shown in Fig. 1.

How can the architecture shown in Fig. 1 be trained ? As-
suming that all but the output weights are fixed, we can regard
the inner neurons as dynamical reservoir, which is triggered
by the input signal and provides a dynamical memory. Its
information processing capacity is maximal, if the states are
maximally decorrelated with respect to the given input. Then
the output layer can optimally combine these states to read
out the desired output. We will show below that a compromise
between error propagation and decorrelation is implemented

by the Backpropagation-Decorrelation rule

∆wij(k+1) =
η

∆t

f(xj(k))
∑

s f(xs(k))2 + ε
γi(k + 1) (2)

where γi(k+1) =

∑

s∈0

(

(1−∆t)δis + ∆twisf
′(xs(k))

)

es(k)−ei(k+1). (3)

Here η is the learning rate, ε a regularization constant (ε =
0.002 throughout), and es(k) are the non-zero error compo-
nents for s∈O at time k : es(k)=xs(k)−ys(k) with respect
to the teaching signal ys(k). We show below that the term
f(xj(k))/(

∑

s f(xs(k)2 + ε) implements an approximative
decorrelation rule. The γi propagate a mixture of the local
errors ei(k+1), ei(k) and the errors in the last time step es(k)
weighted by a typical backpropagation term involving f ′. Note
that a restriction to adapt only the output weights introduces
the kind of inner dynamic reservoir discussed above.

The complexity of this rule (counting only multiplications)
is of order N2 + 2N + NNo: N for the factor in the
denominator and N for multiplication of all f(xj) with that
factor. Computation of all γi need NNo multiplications, finally
there remain N2 for multiplying each fjγi, i, j ∈ {1, ...N}.

The discussion below and the simulation results will show
that it is in most cases reasonable to restrict adaptation to the
output weights. Then for the most common case of a single
output neuron we obtain

∆w1j(k+1) =
η

∆t

f(xj(k))

||f(x(k))||2 + ε

×
[

[

(1−∆t) + ∆t w11f
′(x1(k))

]

e1(k) − e1(k+1)
]

(4)

This update can be computed with complexity 2N only.
The method as presented here is a fast online algorithm
and needs to store only the N activations of the last time
step. Its derivation in the next section shows that it coarsely
approximates batch and online algorithms introduced in [6],
which in turn can also be interpreted as backpropagation-
decorrelation rules.

III. DERIVATION OF THE LEARNING RULE

A. Recurrent learning as constraint optimization

Let x1 be the output neuron, then we have to solve the
constraint optimization problem

minimize E with respect to g ≡ 0. (5)

where the error function E with respect to the target output y
for K time-steps is given by

E =
1

2

∑K

k̂=1

∑

s∈O

[

xs(k̂∆t) − ys(k̂∆t)
]2

(6)

and the constraint equation obtained from the original recur-
rent network dynamics (1) is

g(k+1) ≡ −x(k+1)+(1−∆t)x(k)+∆tWf(x(k)) = 0. (7)

It has been shown in [6] that many of the common training
algorithms for recurrent networks (including RTRL and BPTT)
can be derived from this starting point. Additionally a number
of approaches using classical quadratic optimization methods
to solve (6), (7) have been introduced, for instance conjugate
gradients [13] and Newton methods, mostly under the term
second order learning (see [14] and the references therein).

B. Virtual Teacher Forcing

To minimize (5), we follow a new approach introduced in
[6]. The idea is to use the constraint equation to compute
weight changes to approach a virtual target state, which is
obtained by differentiating the error E with respect to the
state (instead of the weights as in the usual gradient methods
like RTRL or BTTP). To get a compact notation, we collect
the relevant quantities in vectors (wT

i are the rows of W)

x ≡ (xT (1), . . . , xT (K))T

g ≡ (gT (1), . . . , gT (K))T

w ≡ (wT
1 , . . . , wT

N)T

We obtain a targets

∆x = −

(

∂E

∂x

)T

= −(eT (1), . . . , eT (K))T ,

where es(k) =

{

xs(k) − ys(k), s ∈ O,
0, s 6= O

and compute weight updates ∆w to drive the network towards
η∆x by using the constraint (7):

∂g
∂w

∆w ≈ −η
∂g
∂x

∆x. (8)

We call this approach virtual teacher forcing because the
targeted teacher states x − ∆x are never actually fed into
the network but nevertheless enforce the weight changes. We
refer to the approach to solve the equation (8) using a pseudo-
inverse for ∂g/∂w as Atiya-Parlos recurrent learning (APRL).
It yields the training rule

∆wbatch = −η

[

(

∂g
∂w

)T (
∂g
∂w

)

]−1
(

∂g
∂w

)T
∂g
∂x

∆x. (9)

It is worth noting that this update direction ∆w does not
follow the conventional gradient direction as for real time
recurrent learning [6], [15] and therefore leads to different
weight dynamics, which show a larger sensitivity to transient
behavior for online-learning [15]. The batch update (9) can
be computed for one output and (K � N) with 3N 2 + 3N
multiplications per time-step [6]. It is straightforward to derive
the respective online algorithm [6], [9], [15] by recursively
computing the pseudo-inverse in (9).

C. Atiya-Parlos recurrent learning revisited

We now directly compute the terms in (9) to further
interpret the APRL method. Denote the vector of activations

at time-step k by fk =(f(x1(k)), . . . , f(xN (k)))T , then

∂g(k)

∂w
=











[fk]T . . .
. . . [fk]T . . .

. . .
. [fk]T











∈ R
N×N2

.

Further

∂g
∂w

=







∂g(1)
∂w
...

∂g(K)
∂w






,

(

∂g
∂w

)T

=
[

∂g(1)
∂w

T
. . . ∂g(K)

∂w
T
]

and it is easy to see that
[

(

∂g
∂w

)T (
∂g
∂w

)

]−1

= diag







(

K−1
∑

k=0

fkfT
k

)−1






=diag
{

C−1
K−1

}

where CK−1 is the auto-correlation matrix of the network
activities. On the other hand we have (∂g/∂x)∆x = γ, where

γ = (γ(1)T , . . . , γ(K)T)T , γ(k) = (γ1(k), . . . , γN (k))T

is given in (3). Then

(

∂g
∂w

)T
∂g
∂x

∆x =







∑K−1
k=0 fkγ1(k + 1)

...
∑K−1

k=0 fkγN (k + 1)






∈ R

N2
×1

⇒ ∆wbatch =







C−1
K

∑K−1
k=0 fkγ1(k + 1)

...
C−1

K

∑K−1
k=0 fkγN (k + 1)






∈ R

N2
×1

By splitting the batch update into the update up to step (k−1)
and the increment for (k−1) → k we finally obtain the online
rule

∆wij(k+1) =
η

∆t

[

C−1
k fk

]

j
γi(k + 1)

+
η

∆t
(C−1

k − C−1
k−1)

k−1
∑

r=0

[fr]j γi(r + 1) (10)

where Cij
k = ε δij +

k−1
∑

r=0

f(xi(r))f(xj(r)).

If we assume that all activations f(xi) are approximately
centered at zero, for instance that the activation function
f = tanh1, then Ck is the correlation matrix of activations
regularized by adding εI . Thus the term [C−1

k fk]j decorrelates
the vector of activations which then is multiplied by the
one-step error backpropagation of the virtual teacher forcing
rule. The second term in (10) collects all previous errors,
which are multiplied by the increment of the decorrelation
matrix, such that over time these terms exactly sum up to

1Note that any system with a common sigmoid activation function can be
represented by a dynamically equivalent system with tanh as activation and
appropriately scaled inputs [16].

TABLE I
COMPLEXITY OF BPDC ALGORITHMS COUNTING MULTIPLICATIONS FOR

ONE OUTPUT NEURON

algorithm update all weights output weights only

APRL batch 3N2 + 2N 2N2 + 3N

APRL online 7N2 + 4N 6N2 + 5N

BPDC online N2 + 3N 2N

the full decorrelation matrix. Here the term backpropagation-
decorrelation learning originates. We find in the experiments
that indeed APRL as well as the new BPDC rule tend to
center activations at zero (except the output neuron) and
to decorrelate them. The update complexity depends on the
recursive computation of Ck → Ck+1 and adds to a total of
7N2 + 4N [17]. We refer to this algorithm as APRL-online.

We can rewrite (10) also as

∆wij(k+1) =
η

∆t

[

C−1
k fk

]

j
γi(k + 1)

+
η

∆t
(C−1

k Ck−1C
−1
k−1 − C−1

k−1)

k−1
∑

r=0

[fr]j γi(r + 1)

=
η

∆t

[

C−1
k fk

]

j
γi(k + 1) +

η

∆t

(

C−1
k Ck−1 − I

)

∆wbatch
ij (k),

which shows that APRL in fact employs a mixture of the
instantaneous error and a momentum term, which decays to
zero. Thus, though not following the gradient, APRL suffers
from fading memory like gradient algorithms from the van-
ishing gradient (cf. [18]) and cannot preserve information for
long times like for instance Long-Short term memory networks
[19]. For more discussion of the APRL strategy see [15].

D. Backpropagation-decorrelation learning

The considerations above motivate an approximation which
does not try to accumulate a full correlation matrix and
consequently also skips the accumulation of previous errors.
We rather use only the instantaneous correlation at time step
k: C(k) = εI + fk fT

k to get

∆wij(k + 1) = η[C(k)−1fk]jγi(k + 1).

We compute C(k)−1fk using the small rank adjustment matrix
inversion lemma

C(k)−1fk =

[

1

ε
I −

1
ε
[Ifk][1

ε
Ifk]T

1 + fT
k

1
ε
Ifk

]

fk

= fk

[

1

ε
−

1

ε2
fT
k fk

1 + 1
ε
||fk||2

]

= fk
1

ε + ||fk||2
.

The denominator can be computed with N multiplications
and therefore the vector C(k)−1fk with 2N . We obtain

∆wij(k+1) =
η

∆t

[fk]j
||fk||2 + ε

×

{

[

(1−∆t) + ∆t w11f
′(x1(k))

]

e1(k)−e1(k+1),
[

(1−∆t) + ∆t wi1 f ′(x1(k))
]

e1(k), i > 1.

(11)

This update needs just N2 +3N multiplications per data point
k and is BPDC learning applied to all weights.

E. Adaptation of the output weights only

The final step is to apply (11) only to the output weights
to obtain (4). It is motivated by the fact that these change
at much higher rates than the internal weights because the
instantaneous error e1(k +1) is backpropagated only to the
output weights. Further motivation provides that in the one
neuron case for APRL the rates of change of the internal
weights are coupled by constant scaling factors which are fully
determined by the initialization [9]. We therefore consider only
i =1 in (11) and obtain the BPDC rule (4) introduced above.
Table I summarizes the complexity of the different algorithms
introduced. It turns out in the simulation results that fixing the
reservoir sometime even gains better approximation results.

IV. SIMULATIONS AND RESULTS

The new learning rule has been tested on a number of
problems in discrete as well as in continuous time and some of
the results are given below. In all cases we use the normalized
mean square error NMSE defined as E[(x1(k) − y(k))2]/σ2,
where σ2 is the variance of the teacher signal. For comparison
with APRL we use the same network parameters ε = 0.002
and η = 0.2 as in [6]. All results are averages over twenty
runs. We omit further comparisons to other online-schemes
and refer to [6] for a comparison of APRL with BPTT.

Example 1 (Roessler dynamics): Consider the task to
implement a mapping between the coordinate functions
z1(t), z2(t), z3(t) of the chaotic Roessler dynamics

ż1 = −z2 − z3, ż2 = z1+0.2z2, ż3 = 0.2+z1z3 − 5.7z3,

where z1(t), z3(t) are inputs and z2(t) reference output. This
is a mildly complex trajectory learning task in continuous time
with no closed form for its solution [20]. Training proceeds
on 1200 time steps with ∆t = 0.1 integrated by a 4-th
order Runge-Kutta scheme starting from initial conditions
[0.495,−0.116.,−0.3]. The first 200 steps are disregarded
for the error. Generalization is measured for the next 1000
steps, starting at the end of training, such that there occur no
transients.

Example 2 (second order system): The following second
order example is taken from [6], it is given in discrete time
as predicting the next output for

y(k + 1) =
y(k)y(k − 1)(y(k) + 0.25)

1 − y(k)2 + y(k − 1)2
+ u(k).

The network receives input u(k) and the teacher signal y(k+1).
Example 3 (Mackey-Glass): As higher order benchmark

we use the well known Mackey-Glass system with standard
parameters

ẏ(t) = −0.1y(t) +
0.2y(t − 17)

1 + y(t − 17)10
.

Inputs are y(k), y(k − 6), y(k − 12), y(k − 18) and the target
y(k+84), where we integrate from k → k+1 using 30 Runge-
Kutta 4-th order steps.

TABLE II
AVERAGE TEST/TRAINING NMSE FOR 20 RUNS OF 10 EPOCHS, THE NUMBER OF NEURONS, AND THE TIME STEP ARE GIVEN IN THE FIRST LINE. ALL

WEIGHTS ARE INITIALISED RANDOMLY IN [−0.2, 0.2].

algorithm Roessler/20/.1 2nd Order/30/1 Mackey-G./40/.2 10-th Order/40/1
APRL all .092/.068 .017/.017 .101/.175 .340/.362
APRL out .354/.440 .062/.062 .101/.182 .194/.194
BPDC all .123/0.467 .058/.099 .094/.318 .152/.681
BPDC out .006/.094 .050/.085 .034/.408 .142/.540

Example 4 (Tenth-order system) The following very hard
problem in discrete time has also been considered in [6]

y(k + 1) = 0.3y(k) + 0.05y(k)

[

9
∑

i=0

y(k−i)

]

+ 1.5u(k − 9)u(k) + 0.1.

Here we supply u(k), u(k − 9) as input to the network to
predict the next output y(k+1).

In examples 2 and 4 we supply 500 points for relaxation of
the system, followed by 500 points for training, and further
500 for generalization. For the Mackey-Glass system it turns
out that 500 points for training are already too many, such that
overfitting occurs. We therefore reduce the training sequence
to 200 points. The comparative results in Table 2 show that
it is better to adapt only the output weights sometimes even
for APRL, for which we were able to roughly reproduce
the results from [6]. The proposed BPDC rule shows very
good performance at extremely low computational costs and
generalizes very well for the simpler tasks and reasonable for
Mackey-Glass. The results for the tenth-order system are less
satisfactory and we suspect that the rigid cut off of the error
backpropagation is too strict in this case.

In Table 3 training/test NMSE results of BPDC for the
Mackey-Glass system are shown together with the best per-
formance for 200/500 points for training and 500 test points
are given. All results are avarages over 20 run. In lines 3/4
the learning rate is increased every epoch, lines 5/6 refer to a
single “one shot” training. Network size, number of epoches,
learning rates, and increments are shown as (20/5/0.2/0.25) in
the headlines. For results marked with ()? maximal 2 outliers
were disregarded. The results show typical overfitting: for
decreasing training error the test error increases, regardless
to whether we supply more training data or use more neurons.
In Fig. 2 a further interesting feature of BPDC is highlited:
it is able to adapt extremely fast to the main characteristics
of the task in a sort of one-shot online-learning. The results
shown were obtained with a single epoch of training and a
relatively small number of 500 training points.

In general we encountered no stability problems, neither
of the learning process, nor did divergence of the resulting
network occur. It is worth noting that the learning rate has
to increase with the size of the network and for performance
gain. Though not reflected in the averages in Tables 2 and

3, we sometimes observed large fluctuations in the results,
and for all parameter choices there were networks with ex-
cellent performance (with respect to Table 3, line 1, a best
performance of 0.024/.161 was reached at least once for all
configurations).

As the initialization fixes with the reservoir a large portion
of the system it can be expected to be crucial for the success.
However, the very small variance obtained for the results in
Table 2 (< 10−3 in all cases) disprove this claim and the
performance is not very sensitive to the initialization interval.
The strong robustness of the results against initialization
changes or different learning rates can be explained from the
self-stablelizing effect of the resulting increase/decrement of
the denominator in the decorrelation factor.

V. CONCLUSION

We have introduced a new effective and simple learning rule
for online adaptation of recurrent networks, which combines
backpropagation, virtual teacher forcing, and decorrelation.
Applied only to the output weights, it yields a minimal
O(N) complexity at very good performance. The resulting
network structure resembles the “echo state networks” [7],
which also use a dynamical reservoir and optimize a linear
readout function, but need a prescaling of the weight matrix
to obtain a suitable spectral radius and rely on a special local
random connectivity. In some control experiments, we found
no dependence of the performance of our method on the
spectral radius of the randomly initialized weight matrices. The
online version of echo state further uses recursive least squares
algorithms, which themselves introduce new parameters and

0.6

0.8

1

1.2

200175150125100755025

0.1

0.2

0.3

0.4

0.5

5040302010

Fig. 2. 200 points of generalization for the Mackey-Glass and 60 points of
generalization for the 2cnd-oder system both after a one-shot training with
500 points, the network is shown dark.

TABLE III
AVERAGED TRAINING/TEST NMSE OF BPDC FOR THE MACKEY-GLASS AND BEST PERFORMANCE FOR 200/500 POINTS TRAINING AND 500 TEST

POINTS. SEE TEXT FOR MORE DETAILS.

line data 20/5/.2/- 50/6/.2/- 75/6/.5/- 100/10/.5/- 150/10/.5/-
200 .075/.180 .044/.376 .038/.220 .028/.221 .032/.432

2 500 .085/.357 .089/.352 .032/.265 .024/.212 .027/.397
20/5/.2/+.25 50/6/.2/+.2 75/6/+.2 100/10/+.1 150/10/+.1

3 200 .013/1.84 .016/1.32 .016/.826 .009/.581? .008/.477?

4 500 .017/– .011/– .006/.732 .005/.520? .007/.384?

20/1 .2/- 50/1/.2/- 75/1/.5/- 100/1/.5/- 150/1/.5/-
5 500 .033/.382 0.047/.598 .071/1.231 .069/.826 .071/.725
6 1000 .082/.366 0.079/1.100 .067/1.372 .061/.526 .070/.687

computational complexity though the results reported in [7]
yield a better generalization.

In comparison, our approach yields very good performance
at maximal simplicity and minimal complexity. It can be well
interpreted and be derived from the standard error function and
a constraint optimization approach. It relies on a rigid error
cutoff and therefore may have more difficulties with long term
dependencies. However, the extremely fast adaptation allows
to use and train large networks up to several hundred neurons.
The encouraging results, which indicate that a fast online
one-shot learning is possible, make the networks feasible in
particular for identification and adaptive control tasks.

Next steps in the investigation of this algorithm are a
theoretical analysis of the network stability with the meth-
ods proposed in [20], [21]. Of further interest also is a
characterization of the generalization ability with respect to
properties of the reservoir or the information transmission rate
of the reservoir. We believe that the decorrelation of network
states is optimal for generalization, however, a theoretic and
quantitative account could provide further insights, also with
respect to an optimized initialization. Though these and other
issues certainly need to be investigated, we believe that already
in the present form the BPDC learning rule, – especially
because of its efficiency, robustness, and simplicity – is a step
towards easier and more widespread application of recurrent
learning.

ACKNOWLEDGMENT

Special thanks to H. Ritter and U. Schiller for very valuable
discussions and to U. Schiller for the APRL online-learning
implementation according to [9], [17].

REFERENCES

[1] R. J. Williams and D. Zipser, “Gradient-based learning algorithms
for recurrent networks and their computational complexity,” in Back-
propagation: Theory, Architectures, and Applications, Y. Chauvin and
D. E. Rumelhart, Eds. Lawrence Erlbaum Publ., 1995, pp. 433–486.

[2] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural
networks: A survey,” IEEE Tansactions on Neural Networks, vol. 6,
no. 5, pp. 1212–1228, 1995.

[3] J. Schmidhuber, “A fixed size storage O(N3) time complexity learning
algorithm for fully recurrent continually running networks,” Neural
Computation, vol. 4, no. 2, pp. 243–248, 1992.

[4] R. J. Williams and J. Peng, “An efficient gradient–based algorithm for
on–line training of recurrent network trajectories,” Neural Computation,
vol. 2, no. 4, pp. 490–501, 1990.

[5] B. Hammer and J. J. Steil, “Tutorial: Perspectives on learning with
recurrent neural networks,” in Proc. of ESANN, 2002, pp. 357–368.

[6] A. B. Atiya and A. G. Parlos, “New results on recurrent network training:
Unifying the algorithms and accelerating convergence,” IEEE Trans.
Neural Networks, vol. 11, no. 9, pp. 697–709, 2000.

[7] H. Jaeger, “Adaptive nonlinear system identification with echo state
networks,” in NIPS, 2002.

[8] T. Natschläger, W. Maass, and H. Markram, “The ”liquid computer”:
A novel strategy for real-time computing on time series,” TELEMATIK,
vol. 8, no. 1, pp. 39–43, 2002.

[9] U. D. Schiller and J. J. Steil, “On the weight dynamcis of recurrent
learning,” in Proc. ESANN, 2003, pp. 73–78.

[10] S. Choi, S. Amari, and A. Cichocki, “Natural gradient learning for
spatio-temporal decorrelation: Recurrent network,” IEICE Trans. Fun-
damentals, vol. E83-A, no. 12, 2000.

[11] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. Wiley, 2001.

[12] K. P. Körding and P. König, “A learning rule for dynamic recruitment
and decorrelation,” Neural Networks, vol. 13, pp. 1–9, 2000.

[13] W. F. Chang and M. W. Mak, “A conjugate gradient learning algorithm
for recurrent neural networks,” Neurocomputing, vol. 24, no. 1-3, pp.
173–189, 1999.

[14] E. P. dos Santos and F. J. V. Zuben, Recurrent Neural Networks:
Design and Applications. CRC Press, 1999, ch. Efficient Second-Order
Learning Algorithms for Discrete-Time Recurrent Neural Networks.

[15] U. D. Schiller and J. J. Steil, “Analyzing the weight dynamics of
recurrent learning algorithms,” Neurocomputing, 2004, in press.

[16] P. Tiňo, B. G. Horne, and C. L. Giles, “Attractive periodic sets in
descrete-time recurrent networks (with emphasis on fixed-point stability
and bifurcations in two-neuron networks),” Neural Computation, vol. 13,
pp. 1379–1414, 2001.

[17] U. D. Schiller, “Analysis and comparison of algorithms for
training recurrent neural networks,” Master’s thesis, Faculty of
Technology, University of Bielefeld, 2003. [Online]. Available:
http://www.ulfschiller.de/publications/diploma.pdf

[18] S. Hochreiter, “The Vanishing Gradient Problem During Learning Recur-
rent Neural Nets and Problem Solutions,” Int. J. Uncertainty, Fuzziness
and Knowledge-Based Systems, vol. 6, no. 2, pp. 107–116, 1998.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[20] J. J. Steil and H. Ritter, “Recurrent learning of input-output stable
behaviour in function space: A case study with the Roessler attractor,”
in Proc. ICANN 99. IEE, 1999, pp. 761–766.

[21] J. J. Steil, “Local structural stability of recurrent networks with time-
varying weights,” Neurocomputing, vol. 48, no. 1-4, pp. 39–51, 2002.

