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Abstract— We present a database of 2D pressure profile
timeseries as a testbed for tactile object and surface recognition.
The tactile database captures the surfaces of household and
toy objects by moving a 2D pressure sensor mounted to
an industrial robot arm around the objects using real-time
trajectory calculation. Thus, it represents different “views” of
the objects in a similar way as the well known Columbia Object
Image Library (COIL) captures different views of an object
by a camera. As a first application, objects in the database are
classified using a neural network architecture.

Index Terms— Robot tactile systems, Tactile systems (non-
biological), Pattern Recognition, Image databases, Neural Net-
works

I. INTRODUCTION

Tactile sensing is a key discipline for exploration and

grasping with autonomous robot hands. Humans can grasp

and manipulate objects mostly without looking, guided only

by haptics. But to date, there is no technical equivalent to

human skin, in spite of research on different sensor designs

[1], [2], [3], [4], [5], [6], [7]. So we still lack the “CCD-

Chip” for tactile sensing.

But the hardware problem is only part of the story.

Even though suitable pressure sensors gradually become

available, tactile recognition is still a rare research subject.

Why is that so? One reason is that recognition of shape and

surface structure without the help of the visual modality is a

challenging pattern recognition task. However, the same is

true e.g. for much better researched field of computer vision.

In the opinion of the authors, a major obstacle in the

way towards tactile pattern recognition is the complete lack

of any standardized databases for realistic benchmarking of

new algorithms. While in computer vision research databases

such as the Columbia Object Image Library (COIL) [8] or

VisTex [9] are widely established benchmarks, there is no

such database for tactile sensing, because the gathering of

tactile data is much more difficult than the acquisition of

pictures, as will become clear in the following sections.

In this paper, we present a database of tactile pressure

profile timeseries which can be regarded as the “tactile

equivalent” to COIL [10], [8]. COIL is a collection of

images from 100 household and toy objects, where each

object is represented by 72 different views, taken at angles

0, 5, 10 . . . degrees while the object rotates on a turntable.

The database thus allows testing recognition algorithms
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with various training and test sets for evaluation of view

sensitivity and generalization.

How can a “tactile COIL” be designed? First, we will have

to decide on the sensor. If we want to acquire tactile data in

a way similar to human sensing, a 2D sensor as a “fingertip”

is required that is moved smoothly over the surface of an

object. Basically, there are two ways to do this: The fingertip

can either slide over the object, or “roll” without sliding.

Since the real time control of sliding is highly difficult, we

will roll the sensor over the object. Second, it has to be

defined what we mean by a “view” of the object. While a

view of an object is defined by the camera position relative

to the object for image acquisition, there are much more

degrees of freedom for the active acquisition of tactile data.

Not only can the object be presented to the sensor in different

positions and poses, but also the trajectory by which the

sensor rolls over the object surface can vary. Therefore, the

representation of each object in the database is characterized

by two different sets of parameters: Object pose parameters

and trajectory parameters.

In this paper, we present a complete setup of a robot

mounted tactile sensor, which is used to record haptic data

(i.e. tactile and kinesthetic) from a set of 16 different small

household and toy objects. Further, we describe a first

application of the database: A neural recognition architecture

which combines feature extraction by a local PCA approach

with subsequent classification is used to analyze the high-

dimensional tactile data for common patterns. We show, that

classification of the object postures is possible and analyse

the ability to generalize over different features. The reason

for picking this application is not so much the demonstration

of a certain use or practical application, but rather to show

that the gathered data are valid, feasible and usable.

A. Related Work

The most active area in tactile sensing still seems to be the

design and construction of new sensors [11]. Motoo, Arai

and Yamada recently proposed a novel piezoelectric fingertip

sensor [12]. Kim et. al. present a low cost 3 component

tactile device array [13]. The soft tissue structure of the

human finger for texture sensing is imitated in a design

by Mukaibo et. al. [14]. Murakami and Hasegawa use a

rather convetnional approach as they utilize a 6 DOF force

torque sensor with a soft fingertip to detect edges and their

direction [15]. All of these papers have in common, that

they include some more or less extensive experimental part.

Fewer papers or articles cope with algorithms on tactile

data[11]. Platt, Fagg and Grupen propose a control basis for

force-based interaction [16]. Several papers deal with the
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Fig. 1. On the left the sensor panel with RS-232 and power cables. An
ordinary glass as seen on picture produces a pressure profile as can be seen
on the right

shape reconstruction from tactile images [17], [18], [19].

Zhang and Chen use tactile sensing to control a robot tra-

jectory [20], while Melchiori detects the slippage of objects

via tactile sensing [21]. Once again, every new algorithm

working on tactile data has to prove its performance in an

experiment. While the developers of novel sensors will have

to prove the performance of the sensor in experiments, the

developers of algorithms on tactile data could easily resort to

a tactile database. This would not only be a great timesaver,

but would also allow the comparison and optimization of

algorithms. The pendant to our approach in Computer Vision

would be, as mentioned, the Columbia Object Image Library

(COIL) [8] and VisTex [9].

II. DATABASE DEVELOPMENT

A. Hardware

The sensor (Fig. 1) is a low-cost tactile sensor with a

resolution of 16 × 16 Texels. It has a frame rate of about

12 Hz, which was artificially throttled to 10 Hz to ensure an

uninterrupted data flow. The spatial resolution is 6 mm, but

due to the sensor design, there are no measurement gaps.

The measurement range of a single Texel ranges from 4 to

120 kPa, with dynamics of 12 bit.

To archive high quality and reproducible data sets, the

sensor was mounted on a Unimation 6-DOF PUMA 200

robot arm (see Fig. 2). The robot is controlled under RCCL,

the Robot Control C Library [22]. Its abilities for real time

trajectory control made the programming part possible. The

Robot control was performed on a Sun Ultra 5 running

Solaris 2.6.

B. Acquisition

The goal was to gather as much data per object as

possible, so every possible stable posture of an object was

taken into account. The basic sensing procedure consists of

rolling the sensor over the object in such a way, that a certain

contact and normal force is always maintained (compare

Fig. 3). While the trajectory is straight in the x plane of

the robots end effector, the sensor is rotated around the y

Fig. 2. The PUMA 200 robot with tactile sensor mounted while probing
an object.

axis (starting at −30◦ and stopping at 30◦) and the z values

varied dynamically depending on the structure of the object.

The axis of rotation varied depending on the tactile data, but

was parallel to the y axis of the robots end effector.

The first point of contact in the direction of the rotation

(rotating about y means we consider the point with the

highest x value) determines the center of rotation. The

algorithm also does some adaption to too low or too high

pressures, as the correct center of rotation is erroneous due

to the sparse resolution of the sensor.

This procedure is repeated for four different roll angles

(RA) (0◦, 45◦, 90◦, 135◦). It is assumed, that probing the

object from an angle of 180◦ would not yield any different

results than those from the run at 0◦, besides jittering ef-

fects and minimal translation. Therefore, the procedure was

instead repeated at different starting points with translational

offsets (TO) of (0mm,0mm), (3mm,0mm), (0mm,3mm) and

(3mm,3mm). This ensures that the gathered data reflects

jitter and translational effects beyond the spatial resolution

of the sensor.

To simulate the rotation of the object without having to

move the object manually, a starting offset rotation (OR)

around the z axis of 0◦..80◦ with a stepping of 10◦ was

applied.

All objects were smaller in size than the sensor area.

Otherwise we would have needed a much more complex

algorithm to explore the object, which would have also had

an impact on the data, because the datasets would have

become quite diverse from one another.
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C. Database structure

To assure the compatibility to different database manage-

ment systems and for an optimal performance, the database

was implemented in ANSI SQL. The management system

used was MySQL.

The database (Fig. 5) consists of three tables. The ob-

ject tbl holds general information about the objects that

were probed. Every pose of an object is treated as a unique

object in the sense of this database (and therefore has a

unique id). Besides a description of the object, also a picture

of the object was added, to avoid later confusion. The

tactile images, that were taken at a rate of 10 Hz (due

to hardware limitations), were kept in the tactile data tbl.

Besides the tactile frame, which was for space optimization

compressed, a pointer to the probed object, a sensor and a

system timestamp and the kind of run, i.e. rotational and

translational offsets and probing angle, were also saved.

The kinesthetic data from the robot arm was sampled

at 100 Hz. Since the robot control and the retrieval of

the sensor data was done by a single CPU Sun Ultra 5

Workstation, no real concurrency could occur. A timestamp

was taken, so the tactile frames could be associated to

a single, temporally close, kinesthetic frame. To keep the

amount of data manageable, only this frame was saved to

the database. Since the trajectory of the robot was only

updated at the speed of the tactile sensor, the kinesthetic

frames between two tactile frames would not have yielded

any crucial information.

The kinesthetic frames were stored in the t6 trsf table.

They consist of a pointer to the probed object, the id

of the run, a timestamp and the 4 × 3 0T6-Tool-Matrix,

i.e. the homogeneous transformation from the robots base

coordinate system to its tool coordinate system.

Fig. 3. The basic sensor trajectory algorithm displayed in a side view.
Adjusting the center of rotations to the objects shape ensures good coverage
of surface features while keeping the applied pressure in decent ranges.

Fig. 4. Schematic view of the probing process. A top view of the sensor
paths at different angles is shown.

D. Database summary

A total of 16 different objects (pencil sharpener, toy cars,

etc.), all in size and shape ranging between 1 cm and 8

cm, were used for the database. These objects provided 44

different stable positions, which where probed. One basic

probing took about 220 seconds, due to the low frequency

of the tactile sensor. The database currently holds a total of

over 14 million haptic frames, which sums up to about 5.8

GB of compressed data.

Fig. 5. Schematic view of the structure of the database. The database
consists of three tables: object tbl keeps general informations about the
object, tactile data tbl is used to store all tactile images while t6 trsf tbl
keeps all kinesthetic data from the robots internal joint encoders. The last
two tables keep references on the object they belong to.
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III. EXPERIMENTAL APPLICATION

The applications for a tactile database are versatile: the

off-line work on algorithms on tactile data (e.g. slip detection

or shape reconstruction), classification of tactile and haptic

features as well as the feature extraction on tactile datasets

and maybe even explorative strategies on the dataset. As

a first application on this tactile database, an object (or

rather object and posture) recognition with an universal

classification architecture, which main appliance is the field

of computer vision [23], [24], is tried. The approach is

motivated in [25], for the current paper, we will give only a

brief introduction. The goal of the classification task is not

only to prove that classification on tactile data is possible

but also to get an idea of the complexity of the dataset. In

particular we are interested in the generalization properties

for different tpes of parameters.

The architecture is a three stage processing scheme em-

ploying three different types of Neural Networks. It can

be trained to map the raw sensor input, i.e., a time series

of 2D pressure profiles, onto discrete classes (object plus

pose). Since the “gap” between the raw signal and the

symbolic level is particularly large for haptic data, the neural

architecture has to be trained in three passes: The first layer

is trained unsupervised, it performs a vector quantization

of the raw data to find its main clusters. The subsequently

trained second layer implements a local principal component

analysis (local PCA). Thus, the adapted first and second

layer realize a feature extraction from the sensor signal.

By contrast, the third layer is trained supervised to the

classification of these features. The main advantage of

this architecture is its suitability for very high dimensional

and complex data, as has been shown in several earlier

applications both of the isolated stages [26] and as a whole

[23], [24].

The tactile datasets, which also can be seen as time series

of different length, are cut to a common length. This is no

issue, because the recording of the time series starts before

any contact is made. So the frames, that are being omitted

are all blank frames. Since we are looking at a time series,

consecutive frames tend to be very similar. That is why a

22:1 temporal sub-sampling could be justified to reduce the

dimensionality of the input vector. Still the dimensionality

remained of high order: 16 × 16 (image size) × 100 (frames)

= 25600.

A. Overview of the VPL Architecture

Rather than, as the case may be with the use of world

knowledge, “designing” a feature extraction from the tactile

data, a three-stage neural classifier is applied (Fig. 6). The

strength of this architecture lies in its good performance

with high-dimensional input as well as the automatic feature

extraction. The latter is based on local PCA [27], [28].

The actual classification is then performed by several neural

networks.

Fig. 6. The three stage VPL classifier. The first two stages embed a
vector quantization and a principal component analysis to extract features
unsupervised. The last stage performs the classification through neural
expert nets in a supervised way.

From a conceptional point of view, the classification

system maps an input vector x ∈ IRn on the output vector

~y ∈ IRm: ~x → ~y. To use the system for classification,

choose m = # of classes. Using an m-dimensional output

vector is useful to avoid the introduction from artificial

neighborhoods of classes. To train the system, use pairs

(~xTr
i , ~yTr

i ), where (~yTr
i )j = δjc for j = 1..m and c being

the correct class number. After the training is complete,

the system will yield to an input ~x the class c′ via c′ =
arg maxj(~y(~x))j .

The following sections briefly describe the specific stages

of the VPL-architecture.

B. Stage 1: Partitioning

In the first stage, the input space is partitioned using vector

quantization (VQ) (see e.g. [29]). The number of reference

vectors NV Q, which are positioned in the input space by

Activity Equalization VQ (AEV) [26] is one parameter which

has influence on the performance of the classifier. The use

of the AEV algorithm, which, in short, avoids the problem

of codeword under-utilization in sparsely filled input space

[30], i.e. the problem that in a high dimensional space many

reference vectors are likely to remain outliers, render the

system very well behaved in this parameter. During training,

the input space is completely partitioned before the training

of stage 2 is performed.

During classification, in the first stage the best matching

reference vector ~rn∗(~x) for an input ~x which minimizes

‖~x−~ri‖, i = 1 . . . NV Q is selected. The path for the further

processing is chosen in this step.

C. Stage 2: Local PCA

The second stage performs a PCA for each of the training

samples ~x. A separate PCA is done for each Voronoi

tessellation cell of the reference vectors ~ri, which means,

NV Q PCAs are computed. The principal components (PCs)

are calculated with a single layer feed forward neural net-

work using the training rule proposed by Sanger [31]. This

iterative method is prefered over direct computation of the

eigenvectors, which is at least impractical, if not impossible,

for a large dimensionality. After the training is done, the

weight vectors ~wij ∈ IRd, i = 1 . . . NV Q, j = 1 . . . NPC of

the neural nets stand for the local PCs. After the training,

an input vector ~x is projected on the weights ~wn∗(~x),j of net
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number n∗(~x): ~x → ~pn∗(~x)(~x). The dimension reduction is

now performed, in that in the following only the first NPC

dimensions will be considered, i.e. ~p ∈ IRNP C .

After the first two stages, the unsupervised feature extrac-

tion is complete.

D. Stage 3: Classification

In this stage, supervised learning is involved. The fea-

ture vector, which is extracted by the first two stages is

now fed into neural classifiers of type Local Linear Map

(LLM), which are related to self-organizing maps [32] and

the GRBF-approach [33]. For details on LLMs, see [34].

In short, the LLM-Nets approximate nonlinear functions

through NLLM different linear mappings.

Each local PCA has its own local expert net associated to

it. To obtain the final output for ~x, after finding the best

match reference vector number n∗(~x) and the projection

~pn∗(~x)(~x), the LLM number n∗(~x) maps ~pn∗(~x)(~x) → ~y.

E. Discussion of the VPL architecture

In contrast to normal PCA [35], which is the optimal

linear method to cover the variance of a data distribution,

local PCA can be seen as a nonlinear extension. This

allows a much better approximation of nonlinear data and

clustered distributions [27], [28]. Since Local PCA provides

efficient and unsupervised feature extraction, it is used in this

architecture. It has been successfully applied in a number

of applications for pattern recognition [36], [37], [38] and

dimension reduction [39].

Besides the presented approach to calculate the local

PCA representation, other methods produce improved re-

sults through repeated iterations of clustering and PCA to

minimize the least square reconstruction error [39]. Even

further advanced is the probabilistic method of [40]. But the

here used decoupled approach has the advantage of being

computational efficient, which is of more importance in this

application. Moreover, the reconstruction accuracy can be

improved by increasing NV Q.

With the separation into isolated VQ and PCA, there is

also no need for extensive parameter tuning. Both algorithms

are well known and can be treated as “black boxes”. The

remaining parameters are NV Q, NPC and NLLM , which

have an impact on the system performance. If they are

chosen to small, it may result in poor classification results.

But as previous work has shown [24], the finding of suitable

parameters is an easy task, as the classification performance

rises smoothly up to a saturation point with all three pa-

rameters. Overfitting phenomena, as known from different

neural approaches, were not observed.

F. Results

Several experiments with different training and test

datasets were conducted. Each VPL was only used for

testing, if it reached a correct classification rate of over 98%

on the training dataset. The results were averaged over 10

random partitionings of training/test data. The results are

listed in table I.

TABLE I

CLASSIFICATION RESULTS

training set test set rate on
test set

random Roll Angle (RA)
& Offset Rotation (OR)
pair, Translational Offset
(TO)=(0mm,0mm)

RA & OR as in training,
TO=(3mm,0mm)

29.5%

random RA & OR pair,
TO=(0mm,0mm)

RA & TO as in training,
random OR!=training

69.9%

random RA & OR
pair, TO={(0mm,0mm),
(3mm,0mm), (0mm,3mm)}

RA & OR as in training,
TO=(3mm,3mm)

97.2%

OR = {x, x + 20
◦}, random

RA & TO
RA & TO as in training,
OR={x + 10

◦}
84.1%

OR={x, x + 10
◦, x + 30

◦, x
+ 40

◦}, random RA & TO
RA & TO as in training,
OR={x + 20

◦}
89.2%

OR={x, x + 10
◦, x +

30
◦, x + 40

◦}, random
RA, TO={(0mm,0mm),
(3mm,0mm), (0mm,3mm)}

RA as in training, OR={x +
20

◦}, TO=(3mm,3mm)
91.9%

random OR & TO, RA=0
◦ OR & TO as in training,

RA=45
◦

6.0%

G. Discussion of the Classification Results

First of all, it should be stated that the classification results

are quite satisfying, taking the coarse resolution of the sensor

in account. But we are not yet a real challenge to the human

tactile sense, which is said to work at a about 96% to 99%

correct classification [41].

The system seems to be sensitive to translation, if it is

not explicitly trained on it. The location of contact points

appear to yield much information. If translation is explicitly

trained, the results are with over 97 % extremely good. In

contrast to translation, different offset rotations generalize

at least somewhat. And once again, if explicitly trained

on different offset rotations, the results improve. It is also

possible, to train the system simultaneous on both, on offset

rotations and on translation. As one could expect, there is

no generalization for the roll angle.

IV. CONCLUSIONS AND FUTURE PROSPECTS

In this work, we have presented the construction of an

extensive haptic database. A robot mounted tactile sensor

was used to gather tactile and kinesthetic data on 16 different

objects and 44 different positions. An algorithm for the de-

tailed probing of the objects was presented. The database can

be used to evaluate different algorithms on haptic data, as it

provides a common set for comparison between different

approaches. Scientist are freed from the time consuming

and unpleasant acquisition of suitable datasets for further

research.

As a first application, the classification of tactile data with

the VPL-architecture was used. The results of this appliance

enable the drawing of several conclusions about the nature

of the data.

For the future, the evaluation of different algorithms,

which might then take advantage of the kinesthetic data,

as well as algorithms, who are (explicitly) aware of the fact,
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that the gathered data is a time series sounds promising.

Also, explorative algorithms could be investigated on the

grid data provided by the database.
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