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Abstract— We present a strategy for grasping of real world objects which are not exactly known beforehand. To realize

objects with two anthropomorphic hands, the three-fingered 9-  sych flexibility and robustness, several authors have [segbo
DOF hydraulic TUM and the very dextrous 20-DOF pneumatic organize grasping in a more holistic fashion loosely

Bielefeld Shadow Hand. Our approach to grasping is based on tivated by th h h lect biect
a reach—pre-grasp—grasp scheme loosely motivated by human Motvated by the way humans grasp, who select an object-

grasping. We comparatively describe the two robot setups, SPecific pre-grasp posture as one of a few prehensile hand
the control schemes, and the grasp type determination. We postures [12]. Afterwards, the grasp itself is carried out

show that the grasp strategy can robustly cope with inaccurate py comprehensively closing the fingers and evaluating the
control and object variation. We demonstrate that it can be tactile feedback. Though differing in detail, such strigeg

ported among platforms with minor modifications. Grasping d t ¢ licit tact point di i fi
success is evaluated by comparative experiments performing a 0 not compute explicit contact points and Inverse xinecsatl

benchmark test on 21 everyday objects. solutions.
In [13], objects are modeled as a set shape primitives, such
l. INTRODUCTION that one of four distinct pre-grasps for the Barret Hand @an b

It is widely recognized that grasping marks a keystone fagelected. Using the grasp simulator "Grasplt” [14] the posi
sensorimotor intelligence and will certainly be required f tion of the hand relative to the object is systematicallyiedr
future service robots. Therefore, recently a number of meph and grasp success is evaluated using a standard stability
ticated multi-fingered artificial hands have been develppedeasure. This method optimizes the grasp position, but does
which in principle have the necessary mechanical dexterityot learn or optimize the pre-grasp postures themselves and
to carry out a large variety of everyday tasks [1]-[4]. Oran exhaustive search in the space of pre-grasp postured woul
the algorithmic side, however, robust and stable graspfng be infeasible for hands with higher degrees of freedom. [15]
a large variety of a priori unknown objects is still a majorand [16] combine controller primitives to achieve a reach-
challenge even for the best artifical robot hands available.grasp behavior. In coordination with two different reach

Traditionally, the robot grasping process is divided intaontrollers, one grasp controller realizes a three fingasgr
two stages: at first, suitable grasping points on the object awhile a second one combines two physical contacts into a
determined and, secondly, a robot hand posture is computadrtual finger”. The correct instantiations of the contesk
via inverse kinematics to match these points with the fingecan autonomously be learned, by associating general visual
tips [5]. Correspondingly, a grasp has formally been defineigatures such as blob height and width in a reinforcement
in a solely kinematic fashion as a set of contact points on tifeamework [17]. Though this framework provides impressive
object surface together with friction cone conditions, vélas  results, it seems that autonomous exploration for leartong
being independent of the robot hand under investigation [6§rasp a larger number of objects will be too time consuming
The computation of a stable or even optimal grasp has léd be executed on the real robot hardware.
to many sophisticated algorithms [7], [8], but remains a To reduce the need to explore very large search spaces, an
computationally demanding task mostly solved by quadratinteractive imitation based learning approach is appgalin
optimization [7], [9]-[11]. To apply this strategy, the ebf Consequently, we have previously proposed to enable imi-
geometry has to be known exactly to find and optimize thttion grasping [18] in the context of a long-term research
contact points. For real world execution of the grasp, thproject [19] aiming at the realization of a robot system that
object therefore has to be visually (or otherwise) locate instructable by speech and gesture, has visual caedilit
and the movement guided with high precision. This grasattentive behavior, and can execute grasping actions [20],
strategy is suitable for industrial robots which are spemsd [21] (see Fig. 1). In this framework, we use a universal,
to highly structured working environments, but it is difficu biologically motivated grasp strategy, which relies on a 3D
to extend to learning and grasping of real world objects undéocalization of the object, executes a reaching movement,
uncertain visual localization. and finally grasps an object employing appropriate pre-

The challenge for the realization of service robots workingrasp and target grasp postures. In [18], we have proposed
in everyday life domains, however, is to achieve the abilitan object-specific grasp selection based on the observation
to handle a broad range of tasks in hardly structured ewof a human instructor’s hand to reduce complexity of the
vironments, to adapt to new situations, and to grasp negelection process and enhance grasp success. The present



Fig. 1. Interaction with the robot system using speech amstuge. On the Fig. 2. The newly developed robotics setup comprises the Q6-Bhadow
left the modified three-fingered TUM Hand is shown. Dextrous Hand, a 7-DOF robot arm and a 4-DOF stereo camera head

paper focuses on comparative results obtained with a ne@) accuracy of about 2 degrees in every joint, which is
much more dextrous anthropomorphic hand Containing 220t enough for a reliable inverse kinematics based pOSitiOﬂ
joints actuated by pneumatic muscles. We describe the n&fntrol, but allows for a sufficient positioning of the finger
robot hand and the different control concepts, report on tH@ realize suitable grasp postures.

migration process, and compare grasping results on boéh Bielefeld Shadow Dextrous Hand

platforms showing that with minor adaptations our strategy

is portable across significantly differing hardware platis. We currently reinstantiate the described imitation lezgni

setup based on a new platform consisting of a redundant
1. BIELEFELD TUM AND SHADOW HAND SETUPS 7-DOF Mitsubishi PA-10 robot arm, the 20-DOF Shadow
Dextrous Hand, and a 4-DOF active stereo camera head

A. GRAVIS Robot System and TUM Hand based on Helpmate hardware (Fig. 2). The robot arm is

The GRAVIS robot system [20] combines visual attenactuated by a robot server incorporating a security concept
tion and gestural instruction with an intelligent intedac based on an internal model of the whole setup, and a real-
for speech recognition and linguistic interpretation te altime path planning algorithm based on neural networks [22].
low multi-modal task-oriented instructions. For manigigda The Bielefeld Shadow Hand is a product of the Shadow
tasks this setup employs a standard 6-DOF PUMA manifRobot Company [1] and is available as a prototype since
ulator operated with the real-time RCCL-command libranend of 2004. Fig. 3 summarizes the finger kinematics. It
together with a 9-DOF dextrous robot hand developed at ttehows a photograph of the human-like sized real hand and its
Technical University of Munich (TUM). The hand consists ofkinematical model. Joint axes are visualized as black arow
three identical, approximately human-sized fingers driven within the transparent links of the model. The distal joints
a hydraulics system. To improve on the original symmetricadf the four fingers are coupled passively to the middle joint,
arrangement of the fingers, we reconfigured the hand to kech that the angle of the middle joint is always greater than
more human-like. It now features a palm, a thumb, and twor equal to the angle of the distal joint. Hence, the finger
opposing fingers in order to allow a larger variety of two- angbints allow almost human-like movements as described in
three-finger grasps (see Fig. 1). The fingertips are equippfB]. To endow the thumb with a similar dexterity and
with custom built force sensors to provide force feedback faao allow the opposition of the thumb to all fingers, five
control and evaluation of grasps. independently controllable joints are supplied, two ofnthe

Because the hand does not provide joint angle sensocmmbined in the metacarpophalangeal joint and two others
posture control has to be realized indirectly relying orcombined to approximate the trapeziometacarpal saddie joi
piston potentiometers and pressure sensors, both locatedfithe human thumb. The little finger has an extra joint
the base station of the hydraulics system. To this end, wecated in the palm. The hand is also equipped with 2
convert joint angles to piston potentiometer values apglyi DOF in the wrist (not shown in Fig. 3), which allow a
a fixed transform which was determined experimentally anfiexion/extension as well as abduction/adduction movement
independently for each joint. These computed potentiometef the whole hand. Altogether, the hand comprises 24 joints,
values serve as targets for PID controllers actuating tlyefin 20 of them actively controllable.
joints to the desired posture. Additionally, we have to cope Each joint is actuated by an antagonistic pair of McKibben
with hysteresis and non-linearities due to the long digancstyle pneumatic muscles, which have a high force-to-mass
of 2.5m between the base station and the finger pistons, aratio. All muscles are packed densely in the lower forearm
we face sticking and sliding effects caused by return sgringshown in Fig. 2) and the joints are actuated by means of
integrated in the finger pistons. Nevertheless, we achietendons routed through the wrist and hand. The air flow in
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Fig. 4. Schematic view of the mixing controller allowing sinarieous
stiffness and position control.

Fig. 3. Real Shadow Hand (left) compared to its kinematic modght).
Joint axes are visualized as black arrows. correlates with the joint position while the pressure sum
correlates with the stiffness of the joint [26]. This means

and out of the muscles is controlled by 80 miniature solenoidf@t Poth joint position and joint stiffness can be adjusted
on-off valves — one inlet and outlet valve for each muscldndependently. To this end, we use a suitable mixing matrix

An important advantage of artifical muscles is their inhererf® COmpute the two control outputs from botfient position

and variable compliance allowing safe operation, espgcial®or A¢ and astiffness error AS:
in direct contact and in interaction with humans. ' K K N
On their palmar side, the phalanges are covered by a layer ( ﬂex) = ( K9 KS) (AS)
. . . . —149 S
of formable polyurethane "flesh” which is slightly elastic
and has a high friction coefficient providing good adhesion. As a stiffness measur, we use the sum of the pressures
To facilitate grasping of small objects, like matches andn both muscles. The control outpuigy andtex are the time
needles, the fingers include thin polycarbonate fingernailgeriods used to open the valves of the flexor and extensor,
The most innovative feature of the Shadow Hand, howeveig€spectively. Positive periods open the inlet valves, trega
is the provision of a total of 186 force sensors. 34 of theseeriods open the outlet valves. Currently, the frequency of
are distributed on each fingertip giving a touch resolutiothe resulting pulse-width-modulation is set to 50 Hz. Inesrd
of approx. seven sensors per Tridditionally, two texels to reduce valve chatter near the targets, we use a dead zone
(touch pixels) cover the palmar side of the middle an@f 0.6° and0.2bar, respectively. For grasping, this accuracy
proximal phalanges of each finger. The tactile sensors aesufficient, and the audible noise of the solenoid valves an
build from a three-dimensionally curved electrode covéned the air flow is reduced considerably. The working principle
a thin layer of Quantum Tunneling Composite (QTC), whictpf the mixing controller is summarized in Fig. 4.
changes its resistance as a function of applied pressut@. QT The controller parameters have to be determined separately
has an exponential response characteristic, combiningta hifor each antagonistic muscle pair due to differing friction
initial sensitivity with a wide dynamical range that onlyalong the various tendon routes. Furthermore, the motgbili
saturates at considerably stronger forces. of a joint is affected by valve and muscle properties, and the
The hand is also equipped with a complete set of interngiameters of the tendon pulleys actuating the joint, which
sensors measuring current joint angle position as well &8 some cases differ for the antagonistic muscles. Although
muscle air pressure. the muscles react quite slowly, we can successfully track
, a square wave at 0.5 Hz, which is nearly half the speed
C. Joint Control for Shadow Dextrous Hand of typical human hand movements. Due to conservative
While pneumatic actuators are well known and their conparameter tuning we do not observe significant overshooting
trol has been studied mainly for single McKibben muscleg/hile reaching the target quickly. The results are encdnrpg
[24], the simultaneous control of a large number of coopeand sufficient to provide the quality of control needed to
ating finger actuators poses new challenges. The inevitallyiplement our grasp strategy.
complex tendon routing in the hand contributes friction and
tends to amplify the well known nonlinear and hysteresis IIl. PORTABLE GRASP STRATEGY
effects, so that a modeling scheme like that proposed in [25] We employ a biologically motivated grasp strategy which
becomes difficult to apply and would have to be carefullican cope both with the limited positioning accuracy of the
adapted to each muscle. finger joints and the variability of a-priori unknown real
In order to move a single joint, the controller has toworld objects. Before the grasp process can be executed, one
provide two control outputs to drive the valves of the antagef the four grasp types (see Fig. 5) of the grasp taxonomy we
onistic muscle pair. Hence most standard control appr@acheropose has to be chosen. In contrast to detailed taxonpmies
that focus on a single control variable cannot be applielike [12] or [27], all of these grasp types are realizable
directly. The key idea of our controller is the combinatidn owith most robot hands possessing at least three fingers.
two control variables, joint position and joint stiffnesghich ~ With our grasp classification, major hand potentials can be
is motivated by the observation that the pressure differenaitilized (precision, power, pinch), where we further swimtt
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two finger pinch grasp two finger precision grasp all finger precision grasp power grasp

Fig. 5. The Shadow Dextrous Hand showing the four basic gpasmtypes used for both hardware setups. These prototgpessent major potentials
of human grasping (precision, power, pinch) while beingizeale with most robot hands possessing at least three fingers

precision grasps according to the number of involved fingethereof [20]. The 3D position of the referred object is
(two, all). resolved by a stereo vision system to an accuracy of about
Each of these grasp types is realized in both robot hargdicm. In theApproach/Pre-grasp phase, the end effector is
setups by agrasp g. A grasp g comprises apre-grasp located at the visually obtained but still inaccurate objec
and atarget-grasp which are hand-dependent joint angleposition. A visually guided fine positioning based on a hand
configurations. Toapply a pre-grasp or target grasp meansamera improves the error to about 1 mm and orientates
that the respective joint angles are actuated by the robmat hathe hand along the main axis of the object. Because this
controller. When these joint angles are reached, the hantsual feedback is currently available only for the TUM Hand
adopts thepre-grasp posture or the target grasp posture, setup, we mimic this process for the Shadow Hand setup
respectively. by freehand positioning of the object at a fixed location on
With each graspg, additional parameterizations of thethe table with roughly predefined orientation, such thatethe
following characteristics are associated: a relagiosition 7 is a considerable variance in object position and oriesmati
(3 DOF) andorientation & (3 DOF) of the hand to the target relative to the pre-grasp position (definedgnda) similar
object and arepproach distance d (1 DOF) distinguishing to the TUM Hand setup.
the pre-grasp position from the grasp position. In step 2, the robot hand is moved towards the object
Based upon these definitions, tiggasp strategy com- by the approach distaneg whereas the relative orientation
prises the following steps which are illustrated in Figure 6between hand and object remains unchanged. During steps
0) Select a grasp. 3 ar_1d 4 we recommend the use of _tactile fegdback provided
1) Approach/Pre-grasp phase: Move hand to pre-grasp by_ﬂngertlp sensors to stop fu_rther finger motion wh(_en st_able
position and apply the pre-grasp. object contact is sensed. This ensures t_hat the object_ is not
2) Placing phase: Move hand to grasp position. sqgeezed out O.f the grasp by closing the fln_ggrs too far inside
3) Grasp closure phase: Apply the target grasp. If finger comphanpe is large enough, as it is the case fqr
4) Sabilization phase: Wait until fingers exert sufficient OU' hands, grasping can even be successful without tactile
forces on the object. feedback.

5) Lift-off phase: Move hand to pre-grasp position. In order to port this strategy across platforms, actually on
. . the pre-grasp posture of each grasjhas to be adapted to
For selecting the graspto be applied (step 0), we use athe different hands, while the target grasp posture iseasil

vision module permitting observation and 3D 'dent'flca“ondgrived from the pre-grasp. For realizing each of the four

of a human hand posture which is subsequently mappe rasp types (see Fig. 5), the relative posititand orientation

o one of the grasp types realized as described in [.1 between the grasping hand and the object, as well as

The implementations of step 1 of our grasp strategy diffe ; . :

. the angle values of all finger joints, have to be determined

between the two robot hand setups in use. The TUM Han . . :

. . . . carefully to enable grasping of as many objects as possible

setup allows the human instructor to identify an object t%vith this aras
be grasped by speech, pointing gestures, or a combination graspg. . ) )

While we have determined the grasps manually in prelim-

inary experiments, some general rules largely facilitathrs

] | process can be formulated from our experience. The position
- ; ; S~ 7 and the orientatiorv have to be adjusted such that the
center point of the grasping fingers is close to the object’s
center of mass. In pre-grasp posture, the fingers have to be

(a) Pre-grasp pos. (b) Grasp position. (c) Object grasped.(d) Object lifted. opened as much as possible such that even large objects can
(afterstep 1) (aflerstep2) (after step 3 and 4) after step 5) be enclosed. For the corresponding target grasp posture the
Fig. 6. The light bulb is grasped with the Shadow Hand byaitiy our ~ fingers have to be close to each other, but must not touch.
grasp strategy. This allows the detection of a successful grasp as well as



o The object has to be grasped from the surface of the
flat desktop (not over an edge).

o The object is within reach of the robot arm and its
position and orientation are (approximately) known to
the robot system.

With this test, the capabilities of different robot hands,
different grasps, and different grasping strategies can be
evaluated. Summing up, an overall number of 210 grasp
trials were executed by each of the two hands. The grasping
success is shown by the columns “before optimization” of
Table I, in which the objects are ordered with respect to the
success rate evaluated with the TUM Hand.

Apparently, for quite regular shaped objects (no. 1-6) both
hands grasp very reliable. For smaller, more longish, & les
Fig. 7. Set of benchmark objects and their 3D-models in simariaised ~ regular objects the TUM Hand performs considerably worse
to evaluate the grasp strategy and the grasps before amcbpfimization.  than the Shadow Hand. This is due to the better dexterity of
the Shadow Hand allowing more versatile posture selection,

a failure by simply reading a binary contact value from thé@nd its larger, flesh-covered fingertips providing hightioic
fingertip sensors. To cope with flat and small objects, it {§"d good grip to the object. Another advantage is the higher
essential that the fingers close directly above the deskigymber of five fingers, compared to the three fingers of
surface while avoiding to stick into it. Relating to the targ "€ TUM Hand, resulting in much better object-enclosing
grasp posture, that means that the fingertips reach a positid"®-grasp and target grasp postures. Therefore, it islpessi
close to the surface. In pre-grasp posture, the fingers ha§d: t0 successfully grasp the "toy propeller” (no. 2) with
to be bent far enough that sticking of the fingers is avoide@n @ll finger precision grasp, whereas for the TUM Hand
during grasp closure. Based on these quite natural andesim@ SPecialized three finger grasp has to be employed. This
constraints, it is fairly easy to develop suitable reaigmas 97@sP type mainly differs in a larger spread of the fingers
of the grasp types. From our experience, cumbersome figécording to the complex shape of the object. But even the
tuning is neither necessary nor useful because of the hi?‘,hadow Hand performs badly in grasping the bunch of keys
variance in object properties and visual localization a#l we(n0: 20), which is a form-variable compound of flat objects,
as the lack of highly accurate position control. or the p_enC|I, which is too thin to be grasped with one of
the provided grasp types.
IV. COMPARATIVE GRASPING EXPERIMENTS : . .
o Because many objects could not be grasped in all trials
To evaluate the vw_;tblllty of our strategy and t_he_success _We also employed an internal simulation loop to optimize
the grasp types realized, we conducted quantitative gr@spithe grasps for each particular benchmark object. While a
experiments Wlth both har_wds/;etups described above fqr theated approach by [13] optimizes the relative positior of
real world objects shown in Fig. 7. The same set of objec{sre-grasp posture to the object, we assume a fixed relative
was already used in preliminary experiments evaluating thgssition of the object and the hand (up to the accuracy of the
most swted grasp prototype for each object In the imitatiofjgya system providing the position and orientation of the
grasping scenario [18]. In the present experiment we draghject on the table) and rather optimize the pre-grasp postu
on these resu_lts and choose for each object the best graggy the thumb position in the target grasp posture. Based
prototype available. ~ on preliminary experiments evaluating which parametees ar
Following the ideas of the EURON (EUropean ROboticsyost relevant for the success or failure of a grasp, the
Network) for specifying a benchmark test [28], we proposgptimization first uses the simulation to adjust in a onetsho
a “grasp and re-grasp test”. Theles for determination of |earning the object-specific closing distance of the fingers

the grasp success are: in pre-grasp posture to achieve approximately simultaseou
« Each benchmark object is grasped in ten trials. contact of the fingertips with the object. Secondly, the best

« Each grasp trial starts from a home position which igpposition of the thumb to the other fingers in target grasp
different from the grasp position. posture is learned by an evolutionary algorithm because

« A grasp strategy (like that proposed above) is appliegxhaustive search in the enormous posture parameter space
in which the manipulator approaches, grasps, and lif{g impossible. Details of the transfer from hardware to
the target object. simulation and the optimization process itself are beydwed t

« Agrasp is successful if the object is picked up and is Na§cope of this paper, but the performance gain for grasping
lost during a lift-off phase lasting at least five secondssyccess due to this optimization is shown for illustration i

Threeconstraints are associated with this test: columns “after optimization” in Table |. Note that now, even

o The benchmark object is placed motionless antbr the much more difficult objects, optimized pre-grasp and

unattached on a flat desktop. target grasp postures lead to a reliable grasp strategy.



TABLE |
GRASP RESULTS ON THE SET OF BENCHMARK OBJECTS dHG. 7.

SHOWN IS THE NUMBER OF SUCCESSFUL GRASPS OUT OF TEN TRIALS  [1]
BEFORE AND AFTER OPTIMIZING BOTH THE PREGRASP AND THE 2]
TARGET GRASP POSTURES
no. name grasp | TUM Hand | Shadow Hand [3]
type before & after before & after

optimization optimization [4]

1 | adhesive tapg power | 10 10 10 10 [5]
2 | toy propeller | 3F spec | 10 10 10 10

3 toy cube 2F pinch | 10 10 10 10 6]
4 can power | 10 10 10 10

5 | tissue pack | power | 10 10 10 10 [7]
6 tennis ball power | 10 10 7 10

7 paper ball power 9 10 10 10 (8]
8 sharpener | AF prec | 8 10 10 10

9 | remote contro| power 8 10 10 10 9]
10 cup power 9 10 10 10

11 | board marker| 2F prec | 7 10 10 10 [10]
12 tea light AF prec | 6 10 8 10
13 golf ball power 7 10 6 9

14 matchbox AF prec | 7 9 6 10 (11]
15 light bulb power 6 10 8 10

16 | chocolate bar| AF prec | 5 10 10 10 [12]
17 | folding rule 2F prec | 4 10 10 10
18 | voltage tester| 2F prec | 3 9 8 9

19 eraser 2F prec | 4 10 9 10 (23]

20 | bunch of keys| AF prec | 0 0 1 2 [14]
21 pencil 2F prec | O 0 0 8

[15]

V. DISCUSSION (16]

[17]

The encouraging results obtained in this paper show thatg]
it is possible to dispense with computation and optimizatio
of grasping points when adopting a more human-inspired
grasp strategy based on a small set of prehensile pre-grasg
and target grasp postures and autonomous execution of a
closing movement. This strategy is portable among platsorm
and — as the comparison of our hands shows — profits )
lot from dexterity and compliance on the hardware level. It
is independent of a sophisticated and accurate joint contro
scheme, however, naturally needs hand-specific adaptatigg
of the small number of preset pre-grasp and target grasp
postures. Note that all results are based on assuming 2%]
preliminary stage of best grasp type selection, which w{e
base on an observation of human hand postures descrijeg]
in our previous work. On the other hand, the results show
that not all problems can be solved at this level: there aggy
objects which cannot be grasped without further optimarati
of the grasp strategy. For illustration we also have presknt
results for optimized pre-grasp and target grasp posturé%?]
which show further improvement based on an internal modgde]
simulating the grasp process before its execution in real
world. This optimization routine also is independent of the,,
platform and — together with the grasp strategy — can be
used with all kind of robot hands (if they have at least izg]
thumb and two fingers, for which joint angle control can b
realized).
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