
  

Abstract — Grasping movements directed towards virtual 
objects have been found to resemble those directed towards real 
objects. Former studies, however, used natural objects with few 
controllable features. We investigated hand kinematics and 
duration of grasping movements directed towards real and 
virtual spherical objects that systematically vary in size. 
Kinematic data were analyzed using principal component 
analysis in order to extract movement synergies and determine 
invariant movement characteristics for grasping real and 
virtual objects. Mental representations of grasping movements 
were analyzed using a hierarchical sorting paradigm (called 
structure dimensional analysis). Results show that the grasping 
movement is influenced by object characteristics (i.e., object 
size) at an early stage of the movement. Clusters that mark 
objects in PC space can be distinguished early during the 
grasping movement, long before the final grasping posture of 
the hand is adopted, in the real and the virtual case. For the 
final grasping posture, more than 70% of the variance can be 
described by the first 3 PCs, and more than 80% by the first 5 
PCs, for both real and virtual grasping (with slightly higher 
percentages for the real case). Especially the two or three 
smallest objects are clearly separated from medium and larger 
objects in PC space. A separation of small objects from larger 
ones also occurs in the results of the analysis of mental 
representation of grasps, which supports the notion that the 
grasping movement is strongly influenced by conceptual factors.  
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I. INTRODUCTION 

Manual action is a skilled behavior that requires intricate 
control of the musculoskeletal system of the human hand. 
Especially when we grasp, manipulate and interact with 
objects, movements of the hand have to be accurately 
adapted to the object’s shape and the task we want to 
perform. During such skilled movements, the large number 
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of degrees of freedom (DOF) in the human hand has to be 
controlled in a highly efficient way. It has been proposed that 
control of human hand movement is organized in a modular 
way, comprising higher levels that combine and couple 
several DOF into functional groups (i.e., motor synergies), 
thus simplifying the execution of meaningful hand postures 
(e.g., Santello, Flanders & Soechting, 1998). Several studies 
have supported the notion of motor synergies in manual 
action and grasping, and principal component analysis 
(PCA) has proved to be a useful tool in extracting these 
motor synergies (e.g., Daffertshofer et al. 2004; Tresch et al. 
2006). Using a large set of common objects for everyday 
use, Santello et al. (1998) showed that the kinematics of 
natural grasping postures could be described by two 
principal components. Taking into account the fact that they 
measured 15 DOF, this functional reduction supports the 
assumption of motor synergies. In a further study, Santello 
and Soechting (1998) found that hand postures during 
grasping common objects are not passive adaptations of the 
hand to the grasped object, but are in fact controlled actively, 
prospectively with regard to the object that is to be grasped. 
Santello, Flanders and Soechting (2002) showed that data 
recorded at the end of the grasping movement is more clearly 
separable in principle component (PC) space for real objects 
than for virtual objects. Ansuini et al. (2007) studied the 
effects that object perturbations during the transport phase 
have on the evolving hand posture. They found evidence for 
a global control strategy which corroborates the concept of a 
modular hand controller. Ingram et al. (2008) analysed 
human hand movements during everyday activities using a 
portable motion tracking system. In their study, principal 
component analysis revealed two first components of the 
fingers but not the thumb explaining over half of the variance 
of the data, whereas the thumb contributed to higher order 
components which excluded the fingers. Their results 
corroborate and extend results of studies investigating digit 
independence (Häger-Ross & Schieber, 2000) and force 
production (Reilly & Hammond, 2000) in reach-to-grasp 
movements under laboratory conditions.  
 
The view that motor synergies underlie manual actions is 
also supported by studies that focus more on physiological 
aspects. Gentner and Classen (2006) used transcranial 
magnet stimulation to directly stimulate the motor cortex of 
human subjects and thereby elicited complex finger 
movements that closely resembled motor synergies found in 
voluntary hand movements. Weiss and Flanders (2004) 
recorded the activity of several hand muscles via 
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electromyography during grasping movements and spelling 
in sign language. They were able to extract motor synergies 
on the muscular level and correlate these to kinematic 
synergies extracted from simultaneously recorded joint angle 
data. 
 
In addition to the growing body of evidence for motor 
synergies and a modular organization of grasping 
movements, it is known that hand movements are controlled 
actively, depending on conceptual properties of the to-be-
grasped object and the intended task. In task-planning, 
physical and task-related properties of objects cannot easily 
be separated from each other, and their relation has been 
investigated by several authors (e.g., El-Khoury & Sahbani, 
2010; Herbort & Butz, 2010). Cohen and Rosenbaum (2004) 
found that the position of the intended grasp, relative to the 
grasped object, is strongly influenced by further task 
planning, e.g., to the position in space at which the object is 
intended to be placed. Rosenbaum, van Heugten and 
Caldwell (1996) described an end state comfort effect in 
object grasping by showing that the grasping posture is 
adopted in regard to the hand posture during the intended 
action. In a study by Ansuini et al. (2006), the same object 
was used in different tasks. Although the object and its initial 
location were identical in all conditions, significant 
differences in grasping were found for different intended 
tasks, supporting the idea that grasping is strongly influenced 
by task planning even in an early state of the action. 
 
Motor synergies or motor primitives are supposed to 
simplify motor control (Bernstein, 1967). However, motor 
synergies have to be controlled themselves, which requires 
specific additional structures and control schemes. A 
simplification of the motor control process as a whole can 
therefore only be achieved if these structures and control 
schemes are comparatively simple. Motor synergies of the 
hand should therefore represent a general level of control 
that simplifies natural grasping. Their characteristics and 
temporal contribution to hand posture should accordingly be 
related to the properties of the handled object and task. One 
of our goals is to assess the relationship between object 
properties and hand motor synergies, and to reveal 
meaningful mappings between these two levels of 
description. We assume that the layout of grasping postures 
in motor synergy space should reflect the layout of objects in 
their associated feature space, with a simple mapping 
between the two. This also implies that varying the grasping 
movement according to variations in the nature of object or 
task should be gradual and continuous, facilitating effective 
adaptation. 
 
One aim of our research is to develop a quantitative 
framework for the generation of grasping movements based 
on motor synergies, taking into account physical and 
conceptual object properties as well as task characteristics. 
In the current study, we analyze grasping movements 
directed towards spherical objects varying linearly in size. 
Additionally, we compare grasps directed towards real 

objects and virtual objects, the latter being displayed as 
images behind the position in which they have to be 
imagined. According to Santello (2002), mimicked grasping 
movements show similar characteristics to grasping 
movements that involve real objects. In order to address the 
question of grasp conceptualization and how it depends on 
object characteristics, we apply a method that has been 
adapted from cognitive psychology to analyze the mental 
representation of movements (e.g., Bläsing, Tenenbaum & 
Schack, 2009; Schack, 2004). 

II. METHODS 

Eleven right handed subjects (age: 24-39 years, 4 women) 
participated in a series of three experiments. All subjects had 
normal or corrected-to-normal vision and had no known 
impairments related to arm or hand movement. All subjects 
gave written informed consent to be part of the study. The 
experiment was carried out according to the principles laid 
out in the 1964 Declaration of Helsinki. Subjects performed 
all three experiments in the same order, starting with 
Experiment 1, directly followed by Experiment 2, and then 
Experiment 3. 

 
The experiments were carried out at the Manual 

Intelligence Lab, making use of its sophisticated multimodal 
set-up for investigating manual interaction (Maycock et al., 
2010). During the data collection, the subjects stood in front 
of a table (with dimensions 210 x 130 x 100 cm). Subjects 
wore an Immersion CyberGlove II wireless data glove 
(Immersion Corp., San Jose, CA; data acquisition rate: 
100Hz; sensor resolution: <1°) on the right hand that allowed 
for the recording of whole hand kinematics (22 DOF). In 
front of the subject (at a distance of 40cm), a holding device 
for spherical objects (golf tee) was positioned on the table. A 
laptop computer screen was positioned behind the holding 
device. A small round bowl (10cm in diameter) located 
40cm to the right of the holding device served as target for 
placing the objects. A 14 camera Vicon digital optical 
motion capture system (Vicon, Los Angeles, CA) mounted 
around the table was used to monitor the trajectories of the 
hand movements via three retro-reflective markers placed on 
the back of the data glove (see Maycock et al., 2010).  

 

A. Experiment 1 

Eight white plastic spheres varying in diameter from 10-80 
mm in 10 mm steps were used as the real objects. The 
spheres were custom made from ABS plastic with a 3D-
printer (SST 768, Dimension/Stratasys, Inc., Eden Prairie, 
MN). Before the onset of each trial, one spherical object was 
placed on the holding device by the experimenter. During 
Experiment 1, the computer screen remained blank. The 
objects were presented in a fixed order, in 10 pseudo-
randomized blocks of 8, which was constant for all subjects 
and identical for Experiments 1 and 2. In both experiments, 
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the subject was instructed to place the right hand at the 
starting position at the edge of the table and wait for a “go” 
signal to put the object into the bowl. After placing the 
object in the bowl, the subjects had to place their hand back 
at the starting position and wait for the next trial. In order to 
keep the grasping movement as natural as possible, the term 
“grasp the object” was deliberately avoided in the 
instructions as it might have drawn the subject’s attention to 
the grasping action itself. 

 

B. Experiment 2 

In Experiment 2, the experimental procedure was exactly 
the same as for Experiment 1, but this time no real objects 
were used, and the holding device remained empty 
throughout the experiment. Instead, images of objects were 
displayed on the computer screen, which corresponded 
exactly in shape and apparent size to the real objects from 
Experiment 1. The participants were instructed to imagine 
the displayed object lying on the holding device and act 
accordingly. All subjects performed Experiment 2 directly 
after completing Experiment 1. The duration of a typical 
session, including both experiments, was approximately 90 
minutes. 

 
The data analysis for Experiments 1 and 2 was identical in 

order to compare real grasping with virtual grasping. 
Grasping movements were defined as starting with the hand 
accelerating (i.e., reaching a velocity threshold) from the 
starting position and ending as the hand starts to accelerate, 
after grasping the object.  

 
We analyzed velocity profiles of the hand movement in 

space during the grasp as measured by the Vicon motion 
capture system. Velocity profiles were calculated using the 
x-component of one of the markers on the hand as it moved 
through the Vicon volume (i.e., the movement component 
away from the subject’s body and towards the object). Total 
durations of real and virtual grasping were compared using 
repeated measures analysis of variance (ANOVA) with 
factors object TYPE (i.e., real vs. virtual) and object SIZE. 

 
Motor synergies of the grasping movement were 

calculated from the Cyberglove data via principal component 
analysis (PCA). We recorded 22 DOF encompassing the 
movement of all five fingers of the human hand and the 
palmar arch during defined grasping movements. Two DOF 
were omitted from the analysis as they represented the wrist 
and did not contribute to the grasping movement. Based on 
pooled joint angle data from each trial, we computed PCA 
for Experiment 1 and Experiment 2 separately in order to 
extract movement synergies. As a pre-processing step the 
means were subtracted from the joint-angle data and the 
PCA was performed on the correlation matrix. The hand 
posture measured at any given time during the grasping 

movement can be described as a single point in a 20-
dimensional joint angle space; therefore, the grasping 
movement can be regarded as a series of vectors within this 
20-dimensional space. We analyzed this set of postures 
defining points in joint angle space with PCA, yielding a new 
set of unity vectors (or PCs). These PCs form a new 
orthogonal coordinate system whose dimensionality is equal 
to the dimensionality of the underlying data set. Both 
coordinate systems are equivalent descriptions of the 
underlying data, however, in the PC coordinate system the 
unity vectors are aligned with the axes of largest variance of 
the analyzed data set. In this way, PCs reflect or “capture” 
the datas’ variance. 
 

C. Experiment 3 

In a third experiment, we analyzed the subjects’ mental 
representations of the applied grasping movements by means 
of the structure dimensional analysis (SDA) method (see 
Schack 2004, 2010). Ten out of the eleven subjects who had 
taken part in Experiments 1 and 2 also took part in 
Experiment 3. All 10 subjects (age: 24-39 years, 3 women) 
performed Experiment 3 after Experiments 1 and 2. The 
duration of a session of Experiment 3 was approximately 30 
minutes. For Experiment 3, the subjects were seated in front 
of a laptop computer screen. On the screen, the same images 
as in Experiment 2 were displayed as stimuli in the following 
way: a fixation cross was displayed for 1 second, followed 
by one of the objects for 3 seconds, then another fixation 
cross was displayed for 1 second, followed by a second 
object. The subjects were instructed to make a grasping 
movement towards the first object, the reference object, as 
soon as it appeared, as they had done in Experiment 2, then 
make a grasping movement towards the second object as 
soon as it appeared. Subjects had to answer the following 
question: are the two grasping movements you just 
performed similar to each other? This question was delivered 
via a question mark which appeared on a white screen asking 
the subject to press one of two marked keys for a positive or 
negative answer, with a positive answer indicating similar 
and a negative answer indicating dissimilar grasps (note that 
we did not ask for similar and dissimilar objects!). After the 
subject had answered the question by key press, the 
reference object was displayed again, followed by the next 
object, and then by the subject’s response. Each object was 
displayed as a reference (i.e., first object in the tuple) with 
every other object (i.e., second object in the tuple), resulting 
in 56 object tuples (and therefore 56 decisions) in total.  

 
Using this splitting procedure, eight decision trees were 

created, as each object occupied the reference position once. 
Subsequently, the algebraic branch sums were determined on 
the partial quantities per decision tree, submitted to a Z-
transformation for standardization, and combined into a Z-
matrix. This matrix formed the starting point of all further 
data analysis that was carried out according to the SDA 
method (Schack 2004, 2010). In the first step, the binary 
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decisions applied by each subject were used as a basis for a 
metric distance scaling between the items (i.e., the grasps). 
Secondly, the Z-matrix was transferred into a Euclidian 
distance matrix, on which a hierarchical cluster analysis (in 
accordance with the average-linkage-method) was carried 
out to determine a hierarchical structure based on Euclidean 
distances within the given set of items. This resulted in 
individual cluster solutions on the N-concepts formed as 
dendrograms. Cluster solutions were calculated for all 
individual subjects and for the whole group. Each cluster 
solution was established by determining an incidental 
Euclidian distance (dcrit), with all junctures lying below this 
value forming the apical pole of an underlying concept 
cluster. 

III.  RESULTS 

A. Experiment 1 and 2: Duration of hand movements 

Total grasping durations were similar for the real and 
virtual object 1 (both slightly above 1400 ms), but durations 
decreased to a much greater extent over the set of real 
objects rather than for the virtual objects (object 8: real 860 
ms; virtual 1230 ms) (see Figure 1). Durations of real and 
virtual grasping differed for objects 3 to 8 (objects 3 and 4: 
p< .05; objects 5-8: p< .01; paired t-tests). Repeated 
measures ANOVA revealed effects of object TYPE (real, 
virtual) (F[1,10]=13.64; p<.01; partial η2=0.577) and object 
SIZE (F[1.61,16.13]=68.92; p<.001; partial η2=0.873), as well an 
interaction between the two factors (F[2.63,26.27]=39.55; 
p<.001; partial η2=0.798). Mauchly’s test revealed that the 
assumption of sphericity was violated for SIZE (X2

(27)=55.6; 
p<0.001) and for TYPE*SIZE (X2(27)=47.8; p<0.05), 
therefore the degrees of freedom were corrected 
(Greenhouse-Geisser; SIZE: e=0.23; TYPE*SIZE: e=0.38). 
Bonferroni pair wise comparison of objects sizes showed 
differences between object 1 and all other objects (all 
p<.001), object 2 and all other objects except object 3 (all 
p<.01), object 3 and objects 5, 6, 7 and 8 (all p<.05), and 
objects 4 and 7 (p<.05).  
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Figure 1: Durations of grasping movements; squares: real objects; 
triangles: virtual objects; black: mean of all subjects; grey, dashed 

line: male subjects; grey, dotted line: female subjects. 

When analyzing the data from male and female subjects 
separately, the results of the male subjects showed the same 
characteristics as the results for the whole group (with effects 
of object TYPE and SIZE and an interaction between the 
two, all p<.001), whereas the data from the female subjects 
showed significant effects only for object SIZE and the 
interaction (both p<.001). 

 
Velocity profiles of hand movement in space showed a 

similar shape in both conditions, with an initial acceleration 
lasting approximately one quarter of the grasp duration, and 
a following deceleration, comprising a more or less 
distinctive plateau phase, for real and virtual objects. For 
medium and large objects, the shapes of the profiles for 
virtual and real grasping were more similar than for small 
objects, despite the difference in total duration. For small 
objects, deceleration occurred more slowly in the virtual 
grasping case than in the real grasping case. Velocity profiles 
of one subject grasping object 1 are shown in Figure 2.  

 

 
Figure 2: Velocity profiles of one subject grasping object 1, 

averaged over 10 trials; top panel: grasping the real object; bottom 
panel: grasping the virtual object (for larger objects, the profile of 

the virtual case becomes more similar to the real case).  
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B. Experiments 1 and 2: Motor synergies in grasping  

The results of the PCA analysis indicated that on average, 
more than 70% (real objects: 77.6%, virtual objects: 73.1%) 
of the variance can be described by 3 principal components 
(PCs), and more than 80% can be described by 5 PCs (real 
objects: 88.3%, virtual objects: 84.3%). The data from 
grasping real objects recorded at the end of the grasping 
movement (i.e., when object contact is established) was in 
general more separable in PC space than the data from 
grasping virtual objects. Object size was coded by a 
combination of PCs 1 and 2, with a major influence of PC 1 
especially for the three smallest objects (see Figure 3) in 
most of our subjects. Nine out of eleven subjects clearly 
showed this pattern for the real case data (with the group of 
smaller objects including object 4 in two of the subjects). In 
the two remaining subjects the pattern was reversed, with a 
major influence of PC 2 for the three smallest objects. Even 
though this finding was more obvious in the real data than in 
the virtual data, the virtual data showed the same pattern, 
with the three or four smallest objects being clearly separated 
from the larger ones.  

 
When not only the end posture but also intermediate 

postures of the grasping movement were taken into account, 
it became apparent that object-specific clusters in PC space 
became separable from each other early during the 
movement. Figures 4 and 5 show the clustering of objects 1, 
5 and 8 for a single subject, starting from the end grasp 
positions back to a point in time close to the start of the 
movement. It is noticeable that good clustering and 
separation in PC space was not only observed at the end 
grasp point in time, but also along the majority of the 
trajectory as the hand moves towards the object. This was 
true for both the real and virtual cases. The separation in PC 
space broke down for objects 5 and 8 near the beginning of 
the trial (see Figures 4 and 5), but was maintained for object 
1. This trend was observed for all subjects, regardless of the 
case (real or virtual), which means that it is possible to 
recognize grasp types not only at their end grasp positions, 
but at much earlier points along the trajectory of the 
movement. 

 

 

 
 

Figure 3: All 8 objects in PC space (PCs 1 and 2) at end grasp 
position; top panel: grasping real objects; bottom panel: grasping 

virtual objects (one subject). 

 

C. Experiment 3: Mental representation of grasping 

The results of the cluster analysis via SDA (α=1%, 
dcrit=4.44) revealed a representation structure for the whole 
group in which grasps directed towards objects 1-3 (the three 
smallest objects) were combined in one cluster and grasps 
directed towards objects 4-8 were combined in the second 
cluster. Comparing the results of the individual subjects 
revealed that five out of ten subjects showed the same cluster 
solution as the group (cluster 1: objects 1-3, cluster 2: 
objects 4-8), one subject produced a similar cluster solution 
in which the second cluster was split (cluster 1: objects 1-3, 
cluster 2: objects 4+5, cluster 3: objects 6-8), and four 
subjects showed deviating binary cluster solutions (2 
subjects: cluster 1: objects 1-4, cluster 2: objects 5-8; 2 
subjects: cluster 1: objects 1-5, cluster 2: objects 6-8). The 
cluster solution of the whole group of 10 subjects is 
displayed as a dendrogram in Figure 6. 
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Figure 4: Objects 1, 5 and 8 in PC space (PCs 1 and 2) at different 

sampling times in grasping real objects (one subject). We have 
depicted three points in the grasping motion: end grasp, halfway to 

end grasp and close to the beginning of the grasping motion.  

 
 
 
 
 
 

 

 

 
Figure 5: Objects 1, 5 and 8 in PC space (PCs 1 and 2) at different 
sampling times in grasping virtual objects (one subject, the same as 
in Figure 4). We have depicted three points in the grasping motion: 
end grasp, halfway to end grasp and close to the beginning of the 
grasping motion. Note that this (male) subject took significantly 

longer in the virtual condition (2400ms on average). 
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Figure 6: Mental representation of grasping movements towards 
virtual spherical objects; results of cluster analysis (SDA) displayed 
as dendrogram. Numbers on the bottom line mark object diameter 

(mm), horizontal bars in the dendrogram indicate Euclidean 
distances between concepts (the lower the link between items, the 

lower the distance between the corresponding concepts); the 
horizontal dashed line indicates the critical value for the given 

alpha probability (α=1%, dcrit=4.44), only structural links below the 
critical value are considered relevant. 

IV.  DISCUSSION 

We compared grasping movements directed towards real 
and virtual spherical objects that varied linearly in diameter, 
based on grasp durations, velocity profiles and motor 
synergies as revealed by PCA calculated on 20-dimentional 
joint angle space; additionally, we analyzed the mental 
representation of grasping movements directed towards the 
virtual objects using the SDA method. Our results suggest 
that the grasping movement is influenced by conceptual 
factors from a very early state onward. This becomes 
obvious from the motor synergies revealed by the PCA of 
joint angle data from the entire movement. Clusters in PC 
space become distinguishable at an early stage of the 
movement, long before the object is reached and the hand’s 
end posture is adopted. When the final grasping posture has 
been reached, more than 70% of the variance can be 
described by the first 3 PCs (real: 78%; virtual: 73%), and 
more than 80% can be described by 5 PCs (real: 88%; 
virtual: 84%), for both real and virtual grasping, with data 
from real grasping being more clearly separated in PC space 
than virtual grasping data.  

 
Our suggestion that the grasping movement is influenced 

early by conceptual factors is borne out by the results of our 
third experiment. The mental representation of the applied 
grasping movements measured in our group of subjects 
consists of two clusters that reflect the same separation of 
small and medium-to-large objects, one containing the three 
smallest objects 1 to 3, the other one containing objects 5 to 
8. Within the larger cluster, a non-significant differentiation 
into medium-sized objects 4 and 5 and large objects 6 to 8 
occurs in the dendrogram. A differentiation between small 
and medium-to-large objects can also be seen from the 
results of PCA in Experiments 1 and 2. Even at a very early 
stage of the grasping movement, a clear separation occurs 

between the smallest object (diameter: 10mm) and the two 
larger objects, both in the real and the virtual case (see 
Figures 4 and 5). The medium-sized object (50mm) and the 
largest object (80mm) are separated halfway through the 
grasping movement (this separation at a later stage could 
probably be related to the non-significant separation between 
medium-sized and large objects in the dendrogram). When 
we look at the data of all real objects at end grasp position 
(see Figure 3), it is clear that objects 1 to 3 vary mainly 
along the first PC, whereas objects 4 to 8 vary along both 
PCs, and more strongly along the second, which results in a 
“bended” shape of the plot. This pattern occurred in the real 
case for all subjects and in eight out of eleven subjects in the 
virtual case. We interpret this as an additional indicator of a 
general separation between grasping small and medium-to-
large objects. From the finding that the cluster solution found 
by the SDA method closely matches the results of the PCA 
we conclude that the general grasp type is determined at an 
early stage of motion planning influenced by the conceptual 
level, whereas a further specification (in terms of an 
adaptation to object size) is developed during a later phase 
of the grasping movement. The questions if this later phase 
might correspond to the plateau phase observed in the 
velocity profiles (see Figure 2), and if the general grasp type 
can be related to established grasp taxonomies (e.g., 
Cutkosky, 1989) will be addressed in a future publication. 

 
Grasping duration (measured from the beginning of hand 

movement to object contact) decreased with increasing 
object size and took generally longer in the virtual case (with 
grasping durations for objects 1 and 2 showing no significant 
difference between real and virtual objects). For the 
comparison between durations of real and virtual grasping 
movements, we have observed an unexpected difference 
between female and male subjects in our study: when data 
from men and women are analyzed separately, only the men 
show significantly longer durations for virtual grasping 
movements. Durations of virtual versus real grasping differ 
for all males but only for one of the females. As the 
comparison of real and virtual grasping on the basis of motor 
synergies does not reveal any systematic difference between 
female and male subjects, the difference in timing might 
suggest that females can more easily image the object lying 
on the holding device or adapt their grasp to the virtual 
object than the males, and therefore do not need extra time 
for the virtual grasping. However, as the number of subjects 
is rather small, further investigation is necessary at this point.  

 
We have shown that whole hand grasping kinematics are 

low dimensional and can efficiently be described by only 
three PCs indicating strong linear relationships between the 
involved joints. Subjects use similar movement synergies 
that reflect the physical properties of the grasped object 
during real and virtual grasping (see Santello, 2002). Our 
findings allow for a compact description of grasping 
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movements in terms of movement synergies. Furthermore, 
our results corroborate the view that grasp characteristics are 
specified at an early state of the movement. This has also 
been found by Winges, Weber and Santello (2003) who 
showed that hand shape modulation to object volume can be 
detected very early in the grasp, and by Herbort and Butz 
(2010) who investigated anticipatory forearm orientation in a 
knob-turning task. Our results expand previous works by 
suggesting that grasp is adapted to object size (as the only 
varying factor) in a step-wise manner, with an early pre-
adjustment that might relate to the general grasp type and a 
later adaptation to absolute object size, both occurring before 
object contact is established (enabling tactile adaptation as a 
third step). 
 

Studies of human grasping, often in the context of robotic 
applications such as the control of robot hands, have often 
used natural objects that vary strongly in many different 
parameters (e.g., Steil et al. 2004; El Khoury & Sahbani, 
2010). Although there are studies that investigate the 
influence of systematic variations of object shape and 
intended action on grasping movements (e.g., Mason et al. 
2001), none so far have systematically varied more than one 
parameter in a combinatory manner thereby constructing an 
object space in which objects vary systematically. 
Furthermore, to our knowledge there are no studies that 
analyze such object variations with regard to motor synergies 
in a quantitative manner. Another aspect that we want to add 
to the spectrum of grasp characteristics is intended action; 
we plan to analyze grasping movements towards the same 
object, but with different intentions (i.e., grasping the same 
object in order to execute different following tasks), thereby 
combining object space with task space.  

 
In the future, we aim to investigate the adaptive process 

that generates grasping movements based on these 
parameters, varying selected object properties systematically 
in order to understand how they contribute to grasp 
specification. In forthcoming studies, we will investigate 
grasping movements directed towards objects that vary 
different parameters, such as weight, texture, shape or 
roundness. Experiments with objects varying in roundness, 
interpolating between sphere and cube, are currently being 
carried out in our project group.  
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